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Robert Fludd's Temple of music (1618), a complex amalgam of musical references, show Pythagoras entering the blacksmith’s forge in the
basement. The numbers displayed above that scene testify to the Pythagorean relationship between numbers and harmony.
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From ancient Greek times, music has been seen as a mathemarical art.
Some of the physical, theoretical, cosmological, physiological,
acoustic, compositional, analytical and other implications of the rela-

tionship are explgred in this book. which is suitable both for musical
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mathematicians and for musicians interested in mathematics, as well as
for the general reader and listener.

In a collection of wide-ranging papers, with full use of illustrative
material, leading scholars join in demonstrating and analysing the con-
tinued vitality and vigour of the traditions arising from the ancient

beliefs that music and mathematics are fundamentally sister sciences
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This particular relationship is one that has long been of deep fascina-
tion to many people, and yet there has been no book addressing these
issues with the breadth and multi-focused approach offered here.

This volume is devoted to the memory of John Fauvel, Neil Bibby,
Charles Taylor and Robert Sherlaw Johnson, whose untimely deaths
occurred while this book was being completed.

Raymond Flood
February 2003 Robin Wilson
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And so they have handed down to us clear knowledge of the speed of the heavenly
bodies and their risings and settings, of geometry, numbers and, not least, of the
science of music. For these sciences seem to be related.

ARCHYTAS OF TARENTUM, EARLY FOURTH CENTURY &cC

‘We must maintain the principle we laid down when dealing with astronomy, that our

pupils must not leave their studies incomplete or stop short of the final objective. They
can do this just as much in harmonics as they could in astronomy, by wasting their
time on measuring audible concords and notes.”

‘Lord, yes, and pretty silly they look’, he said. “They talk about “intervals” of

sound, and listen as carefully as if they were trying to hear a conversation next door.
And some say they can distinguish a note between two others, which gives them a
minimum unit of measurement, while others maintain that there’s no difference
between the noies in question. They are all using their ears instead of their minds.’

‘You mean those people who torment catgut, and try to wring the truth out of it by
twisting it on pegs.”

PLATO, FOURTH CENTURY BC

The Pythagoreans considered all mathematical science to be divided into four parts:
one half they marked off as concerned with quantity, the other half with magnitude;
and each of these they posited as twofold. A quantity can be considered in regard to its
character by itself or in its relation to another quantity, magnitudes as either
stationary or in motion. Arithmetic, then, studies quantity as such, music the
relations between quantities, geometry magnitude at rest, spherics magnitude

inherently moving
inherently moving,

PROCLUS, FIFTH CENTURY
This science [mathematics] is the easiest. This is clearly proved by the fact that
mathematics is not beyond the intellectual grasp of any one. For the people at large
and those wholly illiterate know how to draw figures and compute and sing, all of

which are mathematical operations.
ROGER BACON, ¢.1265

1 do present you with a man of mine,
Cunning in music and in mathematics,
To instruct her fully in those sciences,

Whereof, I know, she is not ignorant.

WILLIAM SHAKESPEARE, 1594



May not Music be described as the Mathematic of Sense, Mathematic as the Music of
reason? The soul of each the same! Thus the musician feels Mathematic, the

mathematician thinks Music,—Music the dream, Mathematic the working life, —each

to receive the other
i C v

034 7]
T JTOTE pnl Oy,

o
¢

JAMES JOSEPH SYLVESTER, 1865

Mathematics and music, the most sharply contrasted fields of intellectual activity
which can be found, and yet related, supporting each other, as if to show forth the

secret connection which ties together all the activities of our mind . ..
H. VON HELMHOLTZ, 1884

Music is the arithmetic of sounds as optics is the geometry of light.

CLAUDE DEBUSSY, ¢.1900

was a hush as, high above us, he struck up the first great D minor chords of Bach’s
Chaconne. All at once, and with utter certainty, I had found my link with the centre . ..
The clear phrases of the Chaconne touched me like a cool wind, breaking through the
mist and revealing the towering structures beyond. There had always been a path to
the central order in the language of music, . .. today no less than in Plato’s day and in

RBach’s, That I now kunew from mv own exberience
SHLR S, A RGL I RO 11114 o & Tl

WALTER HEISENBERG, 1971

When Professor Spitta, the great expert on Bach, explained to [Ethel Voynich (Lily
nd fourth notes of the octave had to be just a little

uddenly “began t

¢ hate Cod and to
suagen Gea & 0

began to hat an
despise the Almighty Creator of all things visible and invisible who couldn’t make
even eight notes fit”, and she remained devoutly atheistic for the rest of her days.
When Anne Freemantle told her many years later that Einstein had shown that it was
only in our space-time continuum that the octave does not fit, the ninety-six year old

Voynich replied reflectively, “Yes, perhaps I was a bit hasty.”
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Music and mathematics: an
overview

Susan Wollenberg

In the traditional arrangement of knowledge
and teaching in universities, music was one of
the seven liberal arts, along with the other
quadrivium subjects of arithmetic, geometry

and astronomy. This woodcut dates from 1504.

Mathematics and music have traditionally been closely connected. The
seventeenth century has been seen by historians as a crucial turning-point,
when music was changing from science to art, and science was moving
from theoretical to practical. Many connections between science and music
can be traced for this period. In the nineteenth and twentieth centuries, the
development of the science of music and of mathematical approaches io
composition further extended the connections between the two fields.
Essentially, the essays in this book share the concern of commentators
throughout the ages with the investigation of the power of music.

Musicke | here call that Science, which of the Greeks is called Harmonie . ..
Musicke is a Mathemartical Science, which teacheth, by sense and reason,

perfectly to judge, and order the diversities of soundes hye and low.

....... ¥ Q orqer CISILICS OF

JOHN DEE (1570)

The invitation to write an introduction to this collection offered a welcome
opportunity to reflect on some of the historical, scientific, and artistic
approaches that have been developed in the linking of mathematics and
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their separation that elicits surprise. During the late sixteenth and early
seventeenth centuries when music began to be recognized more as an
art and to be treated pedagogically as language and analysed in expres-
sive terms, it might have been expected to lose thereby some of its sci-
entific connotations; yet in fact the science of music went on to develop

This introduction sets out to explore, via a variety of texts, some of
the many historical and compositional manifestations of the links
between mathematics and music. (This endeavour cannot be other than
selective: the field is vast, ranging from ancient theory and early devel-
opments in structure such as those of the medieval motet, to the new

ideae nf nnetr tnanal miriciece and
1a€ds OI PpOost-iGnar music and

explored over the past century) In what follows, the field is viewed
particularly from the perspective of a music historian with a special
interest in the history of music in its educational dimension.



Music and mathematics

Aspects of notation and content

In contemplating the two disciplines, mathematics and music (and tak-

XY 7

1l'lg music here esscntlauy to mean the Western ‘Classical’ lI'dCllll()l’l), it

most basic properties. Both are primarily (although not exclusively)
dependent on a specialized system of notation within which they are
first encoded by those who write them, and then decoded by those who
read (and, in the case of music, perform) them. Their notations are

both ancient and modern, rooted in many centuries of usage while at
the same time incorporating fresh developments and newly-contrived
systems to accommodate the changing patterns of mathematical and
musical thought.

Musical notation can be traced back to the ancient Greek alphabet
system. A series of significant stages came in the development of notations
Wl[ﬂln D()Ul tne Western ana Eastern CHUI'CHCS aurlng IDC l'l'lCClleVal
period. In the eleventh to thirteenth centuries more precise schemes
were codified, including Guido d’Arezzo’s new method of staff
notation and the incorporation of rhythmic indications. By the time of
the late sixteenth and the seventeenth centuries, most of the essential
features of musical notation as it is commonly understood today were
in place within a centrally established tradition. Subsequent additions
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were mainly in t
importance, as with the expanded range of performance instructions in
the nineteenth century. The twentieth century, with its emphasis on
experimental music, saw a precipitate rise in new forms of notation. In
a comparable way, mathematical notation has developed over a period
of at least 2500 years and, in doing so, has inevitably drawn from various
traditions and sources.

In music, the relationship between notation and the content it conveys
is sometimes more complex than might at first appear. Notation has not
invariably fulfilled the role merely of servant to content. While it is
generally true that notational schemes evolved in response to the
demands posed by new ideas and new ways of thinking, it is also possible
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development of such ideas, or may even have preceded—and inspired—
their creation. In mathematics, too, the relationship has subtle nuances.
Notation developed in one context could prove extremely useful in
another (seemingly quite different) context. (A well-known example of
this is the use of tensor notation in general relativity.) In one notable

P PPV ~L s o £ £ frccimmal As <x7]

C , notation 1ormi ed part OI tne 10Cus 01 a pro1essionail ulayutc, when
a prolonged feud developed between Newton and Leibniz as to which
of them invented the differential calculus, together with the different
notation used by each.



Music and mathematics: an overview

In the course of their history, mathematics and music have been
brought together in some curious ways. The Fantasy Machine demon-
strated in 1753 by the German mathematician Johann Friedrich Unger
to the Berlin Academy of Sciences, under Leonhard Euler’s presidency,

English inventor, the Revd John Creed, on whose behalf a similar idea
was presented to the Royal Society in London in 1747, with this device
the ‘most transient Graces’ could be ‘mathematically delineated’. Unger
(in his essay ‘A machine for recording music’) attributed priority of
invention to Creed. Although it aroused considerable interest and

and ‘was tried out by several well-

ut =7

support among the intelligentsia, an
known musicians’ in the mid-eighteenth century, the achine was

ultimately not a success.

Music as science: the historical dimension

Throughout the history of mathematical science, mathematicians have
felt the lure of music as a subject of scientific investigation; an intricate
network of speculative and experimental ideas has resulted. Taking a
historical view, Penelope Gouk has v01ced her concern that such terms

atical categories which are self-evidently distinct from the arts and
humanities. .. Since music is today regarded as an art rather than a
science, it is hardly surprising that the topic should be disregarded by
historians of science’. Her book remedies this situation with resounding
success, inviting a reconsideration of the way joint histories are told.

Within t f
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England, Gouk’s references range from Pythagoras (in particular,
Pythagorean tuning and the doctrine of universal harmony that
‘formed the basis of the mathematical sciences’) to René Descartes (‘the
arithmetical foundation of consonance’) and beyond. Descartes’
Compendium (1618) was translated as Renatus Des-Cartes excellent

ramanon ditim af smucich aud amimaduveveiame af tho authar 11452\ hy tha
compenatum Of MUSICR ana animaaversions of itne aulnor (16>5) Oy iné

English mathematician William Brouncker. Brouncker himself was ‘the
tirst English mathematician to apply logarithms (invented c.1614) to
the musical division’. Thus he entered into a scientific dialogue with the
work of Descartes, contesting the latter’s findings.

a

ing a
to practical. The seventeenth century has been seen by historians as

ko camng) eoience itealf wag movine fro
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foot in
a crucial turning-point, with the emergence of a ‘recognizable scientific
community’ and the institutionalization of science. The founding of the
Royal Society of London in 1660 formed a key point in the development
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Four pages from Lord Brouncker's
translation, Renatus Des-Cartes excellent
compendium of musick.

The legend of Pythagoras’s discovery of a
relation between musical notes and hammer
weights, as portrayed in a twelfth-century
manuscript.

Music and mathematics: an overview

of modern scientific enquiry. The leading scientific thinkers who gath-
ered under its auspices focused some of their attention on music. Gouk
notes that ‘the [Royal] Society’s most overt interest in musical subjects
occurred within the presidencies of Brouncker and Moray, both of
whom ... were competent musicians and keen patrons of music’.
Practitioners of both mathematics and music could learn much from
each other’s work.

Ideas such as those of musical tunings were constantly subject to
review in the light of new theories. Musical issues occupied a central,
not peripheral, position in science: ‘the conceptual problems involved in
the division of musical space were among the most important chal-
lenges faced by seventeenth-century mathematicians and natural
philosophers’. As Gouk observes, Newton in the mid-1660s ‘learned all
that had been developed by modern mathematicians such as Descartes,
Oughtred and Wallis’ regarding the musical scale, and especially the
division of the scale, and ‘rapidly went beyond them in his own studies’.
Important discoveries of this period generally included the observation
that ‘pitch can be identified with frequency’. The seventeenth century saw
the beginnings of modern acoustical science: the new science of sound.

The work of Mersenne has also been seen as representing ‘a signifi-
cant milestone in the emergence of modern science, just like the mus-
ical laws that he established’. Mersenne’s writings—notably, his
Harmonie universelle (1636) and Harmonicorum libri (see Chapter 2)—
became available in England. (Gouk notes ‘how rapidly Mersenne’s
work on musical acoustics was assimilated in England’.) Mersenne’s
belief that ‘the universe was construcred according to harmonic
principles expressible through mathematical laws’ provided an impetus

.

b

o gy e e e
|2 drsexaumns { puwnachouti:
a (% :: 3 N

£ Bo&YSF TV 8

)

*IBDTNI6 3Pl pnlinod ninuo) amr aripn [
phuficalphyfierq Leeraf o Fordt ditenme

eI b

—




Music and mathematics
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William Heather, founder of the Heather
Chair in Music at Oxford University, and
William Crotch, a later holder of that Chair,

for mathematicians such as Newton. Personal contacts and correspond-
ence among scientists further created and consolidated intellectual
connections at this period.

Educationally, the influential tradition of Boethius (c.480-524), cast-
ing a long shadow over the following centuries, and based in its turn on
Pythagoras and Plato, aligned music with arithmetic, astronomy and
geometry in the quadrivium, while grammar, rhetoric and logic formed
the language-based trivium. When the seven Gresham Professorships
were founded in the City of London in 1596 to provide free aduit edu-
cation, their subjects included music, ‘physic’, geometry and astron-
omy. At the opposite end of the educational spectrum, Henry Savile’s
1619 foundation of the University Chair in mathematics at Oxford
University included, in its stipulations of the new professor’s duties,
that he was to expound on ‘canonics, or music’ as one of the quadrivial
disciplines. Music was taught at the universities as a science, while it
was examined (in the form of the B.Mus. and D.Mus. degrees) as an art,
by means of the submission of a composition.

Among the spate of Professorships endowed during the early
decades of the seventeenth century, William Heather’s founding of the
Chair in Music at Oxford (1627) recognized this duality with its provi-
sion for the regular practice of music as well as lectures on the science
of music. In doing so, Heather reflected Thomas Morley’s two-fold divi-
sion in his Plaine and easie introduction to music (1597):

Speculative is that kinde of musicke which by Mathematical helpes, seeketh
out the causes, properties, and natures of soundes. .. content with the
onlie contemplation of the Art, Practical is that which teacheth al that

may be known in songs, eyther for the understanding of other mens, or
making of one’s owne...

Scientific musical enquiry, analytical listening (or listening with under-
standing), and the art of composition, are all equally acknowledged as
valid activities here.

In his pioneering lectures published in 1831, the Heather Professor of
Music, William Crotch was in no doubt as to music’s position in the
scheme of things: from the outset of his ‘Chap. 1: Introductory’, he
asserted that ‘Music is both an art and a science’. Crotch followed this
opening gambit with a long and particularly apposite quotation from
the work of Sir William Jones:

Music. .. belongs, as a science, to an interesting part of natural philosophy,
which, by marhematical deductions. ... explains the causes and properties
of sound...but, considered as an art, it combines the sounds which
philosophy distinguishes, in such a manner as to gratify our ears, or
affect our imaginations; or, by uniting both objects, to captivate the
fancy, while it pleases the sense; and speaking, as it were, the language of
nature, to raise corresponding ideas and connections in the mind of the

hearer. It then, and then only, becomes fine art, allied very nearly to
poetry, painting, and rhetoric...



Hubert Parry, as an Oxford undergraduate,
and William Donkin, Savilian Professor of
Astronomy.

Music and mathematics: an overview

While Crotch went on to state that “The science of music will not
constitute the subject of the present work’, he nevertheless used this as
a device to launch into a discussion of the merits of such an enquiry,
strongly recommending ‘the study...of the science of music...to
every lover of the art’, and pursuing some of its ramifications at con-
siderable length before concluding that ‘enough ... has now been said,
to induce the lover of music to study the science, which, it will be
remembered, is not the proper subject of this work’. After some ten
pages of discussion the reader might well have forgotten this assertion,
or be inclined to question it; and it is clear that Crotch felt it inappro-
priate to offer to the public a didactic treatise on music without paying
any consideration to its scientific dimension, even though his primary
purpose in presenting these lectures was an aesthetic one (‘being the
improvement of taste”).

Some social and educational connections

In the more informal sphere, the history of cultural life is liberally scat-
tered with examples of musical mathematicians and scientists. The
group of intellectuals and artists to which C. P. E. Bach belonged in
eighteenth-century Hamburg, and which included J. J. C. Bode (transla-
tor of, among other works, Sterne’s A sentimental journey), met regularly
at the house of the mathemarician J. G. Biisch; ‘many were keen ama-
teur musicians, including Bode who played the cello in the regular
music-making at Biisch’s house’. C. P. E. Bach’s biographer, Hans-
Giinter Ottenberg, has written of ‘the friendly atmosphere and liberal
exchange of ideas which took place at the home of the mathematician
Johann Georg Biisch...”, quoting Reichardt’s description of these gath-
erings, which evidently possessed a certain cachet: ‘not everyone was
admitted to the inner circle which would not infrequently assemble for
a pleasant evening’s entertainment apart from the wider academic com-
munity’. Ottenberg stresses that C. P. E. Bach was ‘one of Biisch’s closer
acquaintances’.

In nineteenth-century Oxford, Hubert Parry, as an undergraduate,
frequented the home of Professor Donkin (Savilian Professor of
Astronomy) where the Donkins—a highly musical family altogether—
held chamber-music gatherings. For Parry these occasions and the
opportunities they provided, both for getting to know the chamber
music repertoire and for composing his own efforts in the genre, were
enormously stimulating. The Donkins were influential figures in
Oxford’s musical life during the second half of the nineteenth century.

It was in this period, too, that the academic status of music, in the
shape of the Oxford musical degrees, acquired greater weight. The suc-
cession of Heather Professors of Music at Oxford and their assistants
voiced their hopes for the development of the subject within the



Music and mathematics

University, including serious consideration given to the science of
music; for example, the set texts for the D.Mus. at Ozxford included
Helmholtz (see Chapter 5), and others, on acoustics. The evidence
presented by Sir Frederick Ouseley (then Heather Professor) to the

Unive r\r r\F Oxford Commission in 1877 inc l 1ded a ‘DI'O
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establlshmg a Laboratory of Acoustics’ (apparently this plan was never
realised); Ouseley envisaged that such a laboratory ‘might work in with
the scientific side of a school of technical music’ and would have ‘more
Holders of music degrees from Oxford during this period (qualifica-
tions that were considerably coveted in the musical profession) did not
all follow primarily musical careers; William Pole FRS (b.1814, B.Mus
1860, D.Mus. 1867) was Professor of Civil Engineering at Umversny
College, London, as well as organist of St Mark’s, North Audiey Street.
Among those who took the B.Mus. at Oxford, in addition to the ordi-
nary BA, was J. Barclay Thompson of Christ Church (B.Mus. 1868),
who became University Reader in Anatomy. More recent scientist-
musicians have included the mathematically trained musicologist Roy

Howat, whose work on the golden section in Ravel’s music, among
other topics, has attracted wide interest.

enquiry, musicians have been attracted by the possibilities of i mcorpop
ating mathematical science into their efforts, most notably in the fields
of composition and analysis. The fundamental parameters of music—
pitch, rhythm, part-writing, and so on—and the external ordering of
musical units into a set, have lent themselves to systematic arrangement
reflecting mathematical planning. Much has been written about the
mathematical aspects of partlcular compositional techniques—
for example Schoenberg’s method of serialism (see Chapter 8)—
and individual works have frequently been analysed in terms of their
mathematical properties, among other aspects.

The possibilities of mathematical relationships not only within a
single piece, but also between a number of pieces put together to form
a set, are well documented. These sorts of schemes may be expressed in
the findings of musical analysts, possibly by reconstructing notional
systems of composition, and, further, by examining both the known and
the speculative symbolic associations, as well as the mathematical rami-
fications, of such structural procedures. This is found most obviously in
the case of number symbolism, which may be perceived as governing
the musical relationships of an individual piece or a whole set of pieces.

Contrapuntal techniques in music have traditionally been treated
mathematically and identified with qualities of rigour. Among the



Music and mathematics: an overview

prime examples in these latter two categories—the compositional set,
and rigorous counterpoint—must be counted the works of J. S. Bach,
with their mirror canons and fugues, their ordering by number (as with
the Goldberg variations), and their emphasis on combinatorial structures.

nce of over 200 vears. Pan 1l u1nr‘nm|r]ﬁ’ nrl n“ nonec
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interludes for piano, the Ludus tonalis, with its ‘almost geometric

design’, its pairs of pieces mirroring each other (see Chapter 6),
provides a modern echo of these contrapuntal ideas very much in the

Bact fition. i buildi b teveloned i
Hindemith’s theoretical writings. It has been suggested, moreover, that
Hindemith ‘identified...closely with Kepler’, whose life and work

formed the subject of Hindemith’s last full-length opera, The harmony
of the world (1956-7).

‘Scientific’ music has not, however, always been appreciated by musical
scientists. Christiaan Huygens, for instance, expressed a wish that
composers ‘would not seek what is the most artificial or the most diffi-
cult to invent, but what affects the ear most’, professing not to care for

ar‘r‘nrnrplv observed imitations called “fugues”’, or for canons, and

claiming that the artists who ‘delight in them’ misjudge the aim of
music, ‘which is to delight with sound that we perceive through the
ears, not with the contemplation of art’. Huygens here articulated the
tension between ‘scientific’ construction in musical composition, on
the one hand, and music’s expressive effect, on the other. The balance

between these two aspects. and more widelv between the sc
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ientitic
basis of the art of music and its aesthetic applications, has been a source
of fascination for scholars, and indeed continues to be so, as the essays in
this book serve collectively to demonstrate. Their shared concern is
essentially the investigation of the power of music, which has preoccupied
commentators throughout the ages, from antiquity to our own time.
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CHAPTER I

Tuning and temperament: closing

Ancient harmonic discoveries are portrayed in
this woodcut from Franchino Gafurio’s
Theorica musice (1492). Mathematical ratios
are emphasized in the experiments artributed
to Pythagoras.

Neil Bibby

In Ancient Greek times it was recognized that consonant musical sounds
relate to simple number ratios. Nevertheless, in using this insight to construct
a scale of notes for tuning an instrument, problems arise. These problems are
especially noticeable when transposing tunes so that they can be played in

different kevs. A solution ado

ifferent keys. A ted in European music over the last few

n
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centuries has been to draw upon mathematics in a different way, and to

devise an ‘equally—tempered scale.

Each musical note has a basic frequency (essentially, the number of
times the sound pulsates in a given period of time): thus the note A,

which you may hear the ohoe play while an orchestra is tuning up, has

........ ou may h hile an orch is tuning up, has
a frequency of 440 Hz (cycles per second). Frequency enables us to talk
about relationships between musical sounds. However, for purposes of
comparing two notes, the actual frequency is less important than the
ratio of their frequencies.

The structure of a musical scale is determined by the frequency
ratios of the notes that form the scale. The choice of these ratios is ultim
ately governed by the degree of consonance between the notes.
Consonance is both a psychological and a physical criterion: two notes
are consonant if they sound ‘pleasing’ when played together. In physical
terms this seems to occur when the frequency ratio of the two notes is
a ratio of low integers: the simpler the ratio, the more consonant are
the two notes.

Apart from the trivial case of a unison, for which the frequency ratio

is 1:1, the simplest case is the frequency ratio 2:1. When two notes
have this frequency ratio the interval between them is an octave: thus,
for the oboe A, the next higher A has frequency 880 Hz. The origins of
this interval may lie in pre-history, when the earliest attempts at group
singing or chanting would have been in unison, or in octaves for mixed
groups of adults, or men and children: the different vocal ranges of the

participants would thus force the harmonic use of the octave instead of
the unison. As a melodic interval the octave is not common, but three

13
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popular twentieth-century American songs that start with a rising
octave are Somewhere over the rainbow, Singin’ in the rain, and Bali Hai.

This simple frequency relationship of 2:1, corresponding to two
notes forming an octave, is the basis for the construction of any mus-
ical scale. Mathematically, the problem of constructing the scale is to
determine an appropriate set of frequency ratios for the notes that lie
in between. The number of these interpolated notes is arbitrary from a
mathematical point of view. However, the frequency ratios of the
intervening notes must satisfy the psychological/aesthetic criterion of
consonance. Ultimately, as we shall see, the mathematical criterion of
simplicity that underlies the early notion of consonance yields to other
mathematical criteria. It turns out that the tolerance of the human ear,
together with natural conditioning, enables the ‘simplicity” criterion to
be partially relaxed.

The Pythagorean scale

The oldest system of scale construction is that described as the
Pythagorean scale. The system is much older than Pythagoras (¢.550 BC),
but his name is associated with the theoretical justification, in mathe-
matical terms, of its construction. Legends have come down to us,
through the late Roman writer Boethius among others, relating how
Pythagoras ‘discovered’ this scale: they alleged that Pythagoras noted
the harmonious relationships of the sounds produced by the hammers
in a blacksmith’s forge, and further investigations revealed thar the
masses of these hammers were, extraordinarily, in simple whole-
number ratios to each other! From this claimed observation Pythagoras
is supposed to have leapt to the realization that consonant sounds and
simple number ratios are correlated—that ultimately music and math-
ematics share the same fundamental basis.

It is not difficult to construct a scale by following the Pythagorean
insight. The strategy is to take any note and produce others related to

Dertail from Robert Fludd’s Temple of music
(see Frontispiece), showing Pythagoras
entering the blacksmith’s forge.

14



CHAPTER I | Tuning and temperament: closing the spiral

it by simple whole-number ratios, in the confidence that on Pythagorean
principles the resuitant notes will sound consonant. The structure
of such a scale is ultimately based on the simple frequency ratios of 2: 1
and3:1.

In the cace of 3 nlhie
1l Wi Cast Ul « 1ul

3
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produced depending on how the string vibrates, and this too seems to

follow the Pythagorean observation. Consider a vibrating string soundin
g g 4 £

a note of frequency t.

——

R e e E———

The same string can also vibrate at twice the original frequency, sound-
ing the note of frequency 2t. The interval between the new and original
notes is given by the ratio of the frequencies, 2t:t or 2: 1, an octave.

would sound a note of fre

e interval between the notes of frequencies 3t and 2t is 3:2,
3
between the note with frequency t and this note is therefore 3.

We now have a three-note scale {t, 24, 2t}. If we regard the note with
frequency t as the note C, for example, with C" an octave higher, then
this scale is

t ot 2t

This procedure has not only created a new note (G), but also a further
new interval. Our previous interval, between C and G, is called a perfect
fifth and the new interval between G and C’ is called a perfect fourth. The
ratio corresponding to the perfect fifth is 3, as we have seen, while the
perfect fourth has ratio 2t:3t, or 3.

We now have a method for generating yet more notes. If we lower

P T, [ T oY o ¥ o I RN T DU o SN R R B
e note C [)y < pCI‘I Cr Illlh, Dy CllVldll’lg 1S II'CquCl’le Dy 2, W& ODldIm
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the note F of frequency 3t. It lies between C and G, and the resulting

scale is
ral n ~n rald
C c G C
1 ﬂf if 2t
12 3t 2t =13

The process by which the scale is generated is thus essentially iterative:
each new note yields a new interval with its nearest neighbour, and this
interval can then be used to generate further new notes.

B inuing: in this way, we obtain the interval | Fand-6-
This is called the major second, or whole tone, and has ratio ;t:3t,
or 5. This new interval in turn gives rise to a new note by simultane-
ously lowering both F and G by a perfect fourth: the new note, a whole
tone above C, is D. We can now use the whole tone interval to fill in the
gaps in the scale:

3 27 243 2
t 2t Tel st 1

nameofnote C D E F G A B C’
frequency - 3

256
243

X<
® [0

interval s 3 743 s

Each of the resulting ‘narrow’ intervals E to F and B to C is a minor sec-
ond, or semitone, and has a ratio of 3 : %, whichis . In addition, sev-
eral other new intervals appear, including the major third C to E, with
sixth C to A, with
to B, with ratio 33:. We thus arrive at the Pythagorean scale, and we
denote the resulting set of notes by P.

An alternative view is to regard the scale as being formed by a suc-
cession of perfect fifths, starting from C. In this view, we form the five

notes that are successive fifths above C, and the note that is a perfect

tifth below C. We then reassemble these into a single octave
B £ O
g% D © E — %
. o T~ -~ o
o e o>
D M « JE— O
C D E F G A B

The result of this process is equivalent to our earlier one. In the
resulting scale, successive notes are separated by an interval of a tone,
with ratio I, or a semitone, with ratio 2. The semitone is actually
smaller than its name would suggest, because (535)? is less than ;—so it
is not a “semi’-tone in any accurate sense! We shall see later that this
leads to serious problems: for example, on a modern keyboard it seems
as though twelve perfect fifths are equivalent to seven octaves. However,
if the tuning is Pythagorean, this cannot possibly be the case, as we shall

see later.

16
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More generally, it we stick to octaves and pertect tifths, then only the
numbers 2 and 3 (and their powers) can be involved in these ratio

calculations. Thus, each note in the Pythagorean scale can be written

2P.29

C D E F G A B c’
1 322} 3426 273 312 3724 3727 2
anlf\rinn nrther the wav that the natec of the Duthaoarean crale
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combine, however, we run into a problem. Suppose that we wish to find
the note a major seventh above A (3°/2%: this note is 3°/2% X 3°/2" =

3%/2"". Lowering this by an octave, we get 3*/2'%, which must lie some-
where between G and A (since 3/2 < 3®/2'* < 3%/2%. This leads us to
realize that the Pythagorean scale is not ‘closed’” under transposmon

but the rules under which we cong
LWL LG L UILO UL L VWWILLILLL VWL Jlave LUl

indefinite number of new notes. This leads to problems if we want to
construct a scale (in particular, a physically embodied scale such as a
keyboard) that allows transposition of keys.

Transposition in the Pythagorean scale

We constructed the Pythagorean scale P by a succession of transposi-
tions of the basic key note C: in each case we transposed up a fifth (mul-

tinlving its frequen cy hv —\ and where necessarv took the re QL]JnO‘

b Yt A >~ e A hasahas sEEA b AR EESE S

note down an octave (halving its frequency). A good way of seeing what
is going on in the problematic issue which has just arisen, of an appar-
ently indefinite number of new notes being produced, is to consider the
effect of the same transpositions on the entire scale P. Does this lead to
another Pythagorean scale, and are the same notes involved?

Let us build a new scale on the note G. To do this, we transp
the original Pythagorean scale P up by a fifth, and transpose down
an octave when necessary. The resulting scale P' includes most of the
notes of P itself, as a result of the partial regularity of the distribution

of the intervals between the original notes:
[tone-tone-semitone J-tone-[tone-tone-semitone].

However, there is a ‘new’ element, the note 3%/2° this note
lies between the two existing notes F and G, since 22/3<3°/2°<3/2.
This new note is the familiar F sharp, written F!, and is required
when we transpose from the scale of C to the scale of G. It does not lie

17
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18

symmetrically between F and G, however, since the interval 37/2"
between F and F' is slightly greater than the interval 2°/3° between
F'and G.

C D E F
P 1 3,2/23 37 o 22/3
P 1 1 32/2 a 3,725 %9

T

o
9]

A i}
5

¥, 1 2

33 35
24 ,/2? 2

o

o

In a similar way, a new scale can be built on the note F. In this case
we divide the frequencies of each note by 3, and where necessary trans-
pose up an octave. This new scale, which we may call P,, again contains
a ‘rogue’ element, with frequency 2°/3%, which is the familiar B flat,
written B, of the key of F. Again, this new note lies between two exist-
ing notes, A and B, since 3%/24<24/3*<3%/27, and again not symmet-
rically since 2%/3° is less than 37/2'": thus, the new note is less than the
geometric mean of the two notes each side of it.

C D E F G A B B C

3
Pl ol |Ze|% 7 Vol 7|2
| VA Y| % % V5| 7 2

Continuing in this way, we successively generate a new note between
a pair of old notes, with each new note being slightly higher or lower
than the geometric mean of its neighbours. After six such transpositions
in each direction, we arrive at the scales P° and P, opposite, in each row
of which only one note (F or B, respectively) has survived from the orig-
inal scale P.

The notes of the top row correspond to the key of F* and those of the
bottom row correspond to that of G'. By comparing these two scales,
we can see that all of the notes of the G scale are slightly lower than
those of the F* scale. In particular, under the transposition into the key
of F!, the original key note C has become 3°/2°, while under its trans-
position into G’ it has become 2'°/3°. The interval between these notes
is (3°/2%)/(2"°/3°), which simplifies to 3'%/2'" or 1.01364.... This very
small difference, called the Pythagorean comma, lies at the root of the
contradictions inherent in the Pythagorean scale. Although 3'? and 2"
are very close, they are not the same.

Furthermore, no succession of fifths can form an exact number of
octaves—for if it did, there would be integer solutions p and q to the
equation (3)P = 29, or 3* = 2P * 4. This has no solutions, since no power
of 3 can equal a power of 2 (apart from the zeroth power), a particular
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case of a mathematical result (the uniqueness of prime factorization)
known since the time of Euclid. However, the fact that 3'% is approx-
imately equal to 2 suggests that p = 12, ¢ = 7 is an approximate solu-
tion, and that the “difference’ can be measured by the ratio 3'2/2'°, the
Pythagorean comma.

We are thus faced with the fact that there is no end to the process we
have initiated: transposition up a fifth and transposition down a fifth
take us on infinite journeys, ever generating new notes, even if some of
these (as with G* and F') are tantalisingly close. The journey can be
thought of as traversing a spiral, starting from our set P (represented by
C): for each 30° step clockwise we spiral outwards and transpose up a
fifth, while for each 30° step anti-clockwise we spiral inwards and trans-
pose down a fifth (see overleaf). Adjacent points on the same ray of the
spiral differ by the Pythagorean comma.

Just intonation

Many of the intervals produced by the Pythagorean system are far from
simple: what started as a system of consonances involving only small
whole numbers has turned out to be less simple than at first appeared.
For example the major third interval of ()= & and the major sixth
(&) and the semitone (=2) involve relatively large numbers. However, it
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20

Spiral of Pythagorean fifths.

is important to note that musical intervals until the early renaissance
were essentially melodic intervals: they would be perceived as relation-
ships between successive notes, rather than as relationships between
notes sounded simultancously.

By the time of the early renaissance, polyphonic music had started to
develop, and in addition to the harmonic use of octaves, fifths and
fourths (hitherto, the only harmonic intervals generally employed),
there was a gradual adoption of thirds and sixths. The use of these
intervals involved a modification of the Pythagorean tuning under
which the third (&) became slightly flattened to 2 or 2, and the sixth
also became slightly flattened, from Zto 3, or .

During the sixteenth century, various attempts were made to modify
the Pythagorean scale to incorporate these more consonant thirds and
sixths. The most notable of the reformers was Giuseppe Zarlino, choir-
moniche in which he proposed an alternative mathematical basis for the
major scale. He retained the Pythagorean relationships for the octave,
fifth and tonic (4 : 3 : 2), but formalized the earlier ad hoc modification of
the Pythagorean tuning by adopting the simpler relationships of 6:5: 4
for the perfect fifth, major third and tonic—that is, ; for the major third

SRR I T S J DRSS TS B - T T TS BN | IS T 1 c
dNd 5 10T UNeE minor tnird. 1 ne scale ne drrivea 4dt, Known d4s tne scdie or
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just intonation, was as follows:

note C D E F G A B (C
c 1 9 5 4 3 5 15 2
frequency 7 8 a 3 2 3 s

- 1 ° o 15 ¢ o » 16
IIILEeTrvdl 8 9 15 8 9 8 s

The frequencies of the notes of this scale can all be represented in the
form 2F-3%-5", where p, q and r are integers, and can be written as follows:

C D E F G A B c’

. 22143 ;2
1 R4

- 2
/4

Py 2 /3 -
/3 a7 L L

N
\n

2

w1

=1~ )
5/3 3

We shall refer to this set of notes as J. Several new intervals are
produced by this scale. For instance, while there are Pythagorean whole
tones(3) for C-D, F-G and A-B, (‘major tones’), there are also narrower
whole tones (‘minor tones’) for D-E and G-A of 5. The ratio of these
two intervals,  : 5, the extent to which they are diffcrent tones, is called
the syntonic comma: 55 = 3*/(2*5) = 1.0125, exactly.

The frequency ratios of the just intonation scale occur naturally in
the ‘harmonic series’, and form the basis for playing certain wind instru-
ments. Indeed, in the case of the horn, the technique of playing
Lnruugn usmg Ild[LlI'dl Ildrfrl()nl(.b LUHUHUCU Unl.ll leVt:S Wwere (JCVCI'
opced during the carly nincteenth century. On the natural horn (without

valves) the harmonics produce the following written notes.
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In this scquence the 2nd, 4th and 8th harmonics correspond to the
octave of the scale (that is, they are all the note C), and the 3rd, 6th and
12th harmonics sound G, the perfect fifth. The 9th harmonic sounds
the major tone (3), which is the same in either Pythagorean or just into-
nation, whereas the 5th and 10th harmonics produce not the
Pythagorean major third (5;), but the just major third ;). Thus far,

tha matiteal hasoaAmics ara tha qn me as iust intonation. Howev T
the natural harmonics are the same as just C 18

7th/14th, 11th and 13th harmonics (indicated with asterxsks) produce
notes of 7, & and %2, which are wildly out of tune on either Pythagorean
or just intonation. Players were expected to coax these notes into tune,
the eleventh harmonic being flattened to F (3) and the seventh har-
monic being sharpened up to B (). The English composer Benjamin
B

“ An per ..,\,\..J...,. r 1 F tho ~

ritten made extraordinary use of these notes in the solo horn pro-
logue of his Serenade for tenor, horn and strings, which is scored for natu-
ral horn, or for an orchestral horn where the player does not use the
valves; the harmonics are indicated in the figure overleat.

Within a single scale, just intonation formed a reasonably satisfactory
solution to problems thrown up by Pythagorean tunlng but the
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Prologue to Britten's Serenade.

Mersenne's keyboard with 31 notes to

the octave,

22
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Transposition with the just intonation scale is even more of a problem
than for Pythagorean tuning. When we transpose up by a fifth, we find
that the new scale includes two new notes: B is transposed to F', as
before, but the D also becomes a new note, an A of 3%/2%, differing by
a syntonic comma from the previous A of ;. The reason for this is that
the interval G-A in the original scale of C was a ‘minor’ tone, but
became a ‘major’ tone after transposition.

C D E F F G A B C’

A A A T4 B DA R A

On fixed-pitch instruments, such as a harpsichord or organ, this
situation made changes of key very difficult. Attempts to overcome
the problem meant that alternative keys differing by a syntonic comma
had to be provided. One seventeenth-century marhematician who took
this issue seriously was Marin Mersenne. In the 31-note keyboard he
described and discussed in his Harmonie universelle (1636-7), there were
no fewer than four keys between F and G!

pedimd oz
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Two of these (X14 and X15) are G flats differing by a syntonic
comma, one for each of the G naturals (again differing by a syntonic
comma), one (X16) is an F sharp (for ‘F13’) and the fourth (X17) is a
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syntonic comma higher than the F sharp of X16. The following dia-
gram summarizes the relationship of these keys:

Sol La Fa Sol La Mi Fa Sol

Xe—py -z~~~ d4~q~t--F-14-p---=- -~

/ T T
Purple , Blue | Yellow\ Red
Indigo Green  QOrange

Newton’s spectrum scale.
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Cl1 » D4 »E9 ------- » F12
It is interesting to note that such keyboards were actually built: Handel,
for example, played a ote organ in the Netherlands.

This multiplicity of keys is necessary because successive transposi-
tions of the scale of just intonation generate even more notes between
those of the basic set J than they did for the set P. In this case each trans-
position produces a new ‘black’ note, as in the Pythagorean case, but an

extra new note is nrnr]nrpd a cvnrnrnr‘ COmma Qharnpr Fnr npward
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transpositions and flatter for downward. This arises, as we have seen,
because one of the fifth intervals in the just scale is narrow——the inter-
val D-A has ratio 5 : ; or 5, which is less than ;. In musical terminology,
the old submediant is too flat to serve as the new supertonic.

The more transpositions take place, the worse the problems get. The
effect of s i

essive upward and downward

n
suc LPWwWall alll QLW L] P i 1

just scale J is summarized overleaf.

In practice, modulations into remote keys were not usual at this time
(partly, no doubt, for this reason): however, even to use the keys near to
C in just intonation required two extra notes per modulation. The sys-
tems discussed so far imply infinitely many keys, with the spiral of fifths

continuing infini rplv both outwards and inwards: the Dvrhaonrfnan sys-
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tem P*, with notes generated by octaves and perfect fifths, and the just
system J*, with notes generated by octaves, perfect fifths and major
thirds, both yield infinite sets. So far as the construction of keyboard
instruments was concerned, this was not an encouraging state of
affairs.

Many attempts were made to develop tuning systems that overcame
the difficulties of Zarlino’s just system. Amongst these, Francesco
Salinas (1530-90) proposed a system called mean-tone, in which the two
whole tones of Zarlino’s system (3 and &) were replaced by their geo-
metric mean, thus giving a whole tone interval of ;5. The interval of
the third remained a pure consonance of %, while the fifth had a ratio of
*.s, which is approximately 1.4953: this is a little less than 3, giving a
rather flat fifth. Isaac Newton also spent much time trying to select the
best ratios. Believing that seven notes in the octave and seven colours in
the spectrum were too much of a coincidence, he even produced a
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Just scales. diagram linking the two; because he wished his scale to be symmetrical,

he chose the note D as his starting point, obtaining the following scale:

note D E F G A B (ol D’
1 9 & 4 3 5 16 2

frequency T s 5 3 2 3 0 1

. Q 16 10 2 10 16 9

interval 3 s ) 3 r s %

Other compromise tunings were also developed, which incorporated
some pure consonances: these sounded reasonably satisfactory for keys
close to C, but in remote keys they could sound at best unsatisfactory,
and at worst excruciating,

Equal temperament

By the beginning of the eighteenth century, it was beginning to be
appreciated that for a keyboard to allow unlimited transposition, with no
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key sounding more in tune than any of the others, it was necessary to
divide the octave so that each note was generated by some basic inter-
val: we call this a scale of equal temperament. Such ideas had been pro-
pounded long before thlS (in medieval Chlna for instance). More

Dialogo della musica antica e moderna (1581) that the scale be constructed
from equal semitones with a frequency ratio of 15. It is easy to check
that (57)!% is about 1.9855 . .., a little less than 2, and that (%) is about

flat octaves and flat fifths, bardly desirable features for the fundamental

interval of any scale.

From this proposal it is

LR el 2

b
(1548-1620), who suggested making the semitone interval equal to
212, thereby preserving the octave’s frequency ratio of 2. Since 27/12 =
1.4983 ..., this choice of semitone still gives slightly flat fifths, but

21/12

better than those of Vincenso Galilei. is an irrational number,

inexpressible as a fraction p/q and in addition, all of its powers up to the

eleventh are also irrational. From a mathematical point of view this is

CiTVTIALIL alt s L t10r Prom a mathemat Py Ul i3

ironical, given that we started out with a criterion for consonance
essentially based on the notion of rationality. Of course, 2712 ig an
extraordinarily good approximation to 3, so good that the difference is
virtually imperceptible: herein lies the justification for its use. In the fol-
lowing table the frequency ratios for the major scale are compared in

Dvrhnanrtﬂnn just intonation and eaual temnerament:
Pythagorean, just intonation and € qual tem perament:

Pythagorean Jjust intonation equal temperament

C 1 1 1

D 1.125 1.125 1.122462...
E 1.265625 1.25 1.259921...
F 1.333333. 1.333333. 1.334839. ..
G 1.5 1.5 1.498307. ..
A 1.6875 1.666666. .. 1.681792. ..
B 1.8984375 1.875 1.887748. ..
c’ 2 2 2

For ears accustomed to just intonation, the major third of almost 1.26
is noticeably sharp, and thus the extreme consonance of the just major
chord (6:5:4) is lost in equal temperament.

Under transposition, we can analyze the behaviour of the equal tem-
perament scale in the same way as we did with the Pythagorean and

just scales. The equally tempered major scale has the following notes:

~ ~ o " ~ y patl

L) | j o r (&4 A b o
7

1 22/]2 24/12 25/12 21112 29/12 211/]2 2
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Circle of fifths.

26

We can again apply the usual transpositions to this set; call it E, and let

us trace what happens when we arrive at E° and E,. In the following

table 2'/' is represented by «.

E6 al a3 as 1!"’ '1“ '1!.0 ﬁ“
E 1 o’ at | o o o’ a2
E(; 11 2.‘ 15 16 a“ m!n mi 1

¢ o p P E F & G A A B B

The ‘new’ notes (@', o, @°, a®, @', a'") now sit symmertrically between
the “old’ notes, since they are their geometric means. Hence the trans-
posed sets are identical, so that the keys of G and F* are the same. In this
way the Pythagorean comma has now been eliminated, and the spiral
has been closed into a circle. Six upward and six downward transposi-
tions now give the same set of notes, and we thus arrive at the familiar
‘circle of fifths”:

We call the set of notes thus obtained E*: the new notes obtained are
those generated by 2'/'2, because every note in E, E or Eg is some
power of 2'/!'2. Moreover, any further transpositions can generate no
new notes, so the set E* is a finite set. This is the great advantage of the
equal temperament system: there are only twelve notes, and these
allow unlimited transposition. The problem of keyboard design is thus
solved, because each note now has infinitely many names: the key for
F* is also that for G, as it is also for A% and E**. By the removal of the
Pythagorean comma, the spiral has indeed collapsed onto a circle.
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The adoption of equal temperament was a lengthy process. Already
in the late Elizabethan period (late sixteenth century) there is evidence
that English virginal composers (notably John Bull) were modulating so
far away from C that a form of equal temperament must have been in

nee hiit ae r
uoe, putasr

universal, especially in Britain: not one of the British organs at the Great
Exhibition of 1851 was equally tempered. However, it is clear that dur-
ing the early eighteenth century the system was increasingly being

tures that go through nineteen of the twenty-four major or minor keys.
The most famous work to exploit all twenty-four keys is J. S. Bach’s Well-

I’PmnPYPf] clavier (1722 and 1738-44). Whether ‘well- erpprPrl meant

equally tempered in the modern sense is disputed, but the work includes
a prelude and fugue for each major and minor key—hence the usual
appellation of “The 48 preludes and fugues’. Meanwhile a variety of
compromise systems co-existed, including for instance the ‘Kirnberger
III system’ which had four just tones, three mean tones, an equal-

tempered fifth, nine different semitones and nnlv four major seconds!

The fact that 2! is nearly 3'2, and that 27’12 is more-or-less 3, is at the
root of the equal temperament idea. The question naturaily arises as to
whether the approximate equation 2f = 3% has any other integer solu-
tions, which might form the basis for an equally tempered scale that
gives even better approximations to the just frequency ratios. There are

tion p/q of log,3. A good example is 2% = 353, which leads to 231/53 =
1.49994 ..., an excellent approximation to 1.5. This suggests that a
structure of 53 notes to the octave (rather than 12) might be better for
temperament purposes. In the nineteenth century R. Bosanquet actu-
ally made a harmonium with such a subdivision of the octave (see

Chapter 5), and the twentieth century saw furt Xp 1 1

possibility. Of course, the development of electromc note production in
the late twentieth century enabled completely accurate equally tem-
pered systems with any number of notes, as we see in Chapter 9.

The idea of consonance is ultimately grounded in the notion of
commensurability, an essential concept in Greek mathematics. We
recognise consonance when we perceive a certain number of vibrations
of one frequency exactly matching a certain number of another
frequency. The Greeks accorded incommensurables a very different
ontological status, and it thus remains a powerful irony that irrational
numbers should come to the rescue—courtesy of the tolerance of the
human ear and cultural conditioning—of the essentially rationally
based system that they originally described for constructing a musical
scale.
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CHAPTER 2

Musical cosmology: Kepler and

In its more developed form, the mathematical cosmology of Johannes Kepler
(1571-1630) presents musical harmony, itself determined by geometry, as a
factor in explaining the structure of the Universe. However, his two most
influential readers, Marin Mersenne and Athanasius Kircher, recognized the
inadequacies of curr i !
celestial music, but Kircher accepts it, though music itself is perceived not as
determined by mathematics but rather as a property built into the Cosmos by
its Creator.

In the opening lines of his Song for Saint Cecilia’s Day John Dryden
wrote

From Harmony, from heavenly Harmony
This universal frame began:. ..

The poem was first published in 1687—making it an exact contempor-

ary of Isaac Newton's Mathematical principles of natural philosophy—but

is now probably best remembered in the magnificent musical setting by
Handel, which was given its first performance on Saint Cecilia’s Day
(22 November, New Style) in 1738. By then, and indeed at the time Dryden
wrote, the reference to celestial music was no more than a literary
device. The main body of the poem is concerned with other matters,

but cosmology reappears in the final ‘Grand Chorus’:

As from the power of sacred lays
The spheres began to move,

And sung the great Creator’s praise
To all the blest above;

So when the last and dreadful hour

This crumbling pageant shall devour

The trumpet shall be heard on high,

The dead shall live, the living die,

Planetary orbs and regular polyhedra, a And Music shall untune the sky.
fold-out plate from Johannes Kepler's .. . . . .
Mysterium cosmographicum (Tiibingen, 1596), As any good Dictionary of Saints will reveal, it is a case of least said

soonest mended about the probable connections of the historical Cecilia

Ohnmenn 11 thn wmlaen ieoalfl cnceing tha dara 1207
Lnapter i; tne piate itsen carries tne aate 1597,
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with music. The connection of music with the origin and structure of
the cosmos has a much greater historical credibility. Music theory had
been a recognized part of mathematics since Ancient times. Its origins
were traced back to the shadowy figure o Pythagoras who, if he was

indeed a real person. mav have lived in the sixth ury BC. Thus, in
ndeed al per may hav 1¢ SIXth ury BC. lThus, in

& a ivar ¢ uuu\ (e

(‘)

Ancient, medieval and Renaissance times, to claim that the order of the
universe was ‘musical’ was to claim that it was expressible in terms of
mathematics.

We—still-beti . —indeed: 1 -l ] ]
proved so powerful that it is perhaps difficult to take a sufficiently cold
hard look at the metaphysical basis on which it rests. On the other hand,
the explicitly musical cosmologies derived more directly from the
Ancient tradition seem sufficiently fantastic to invite instant questioning
of their underlying metaphysics—except, of course, in a poetic context
such as that provided by Dryden. In his day, those inclined to be unpoet-
ical about cosmology could turn to Isaac Newton for a mathematical
explanation of a kind more acceptable in natural philosophy.

(‘nrmnelv Pnnnah the only natural nhﬂnqrmher to have left a

ully
worked out mathematical cosmology that uses music theory was the
astronomer who supplied the laws from which Newton derived his
mathematical theory of gravitation, namely Johannes Kepler. Since
Kepler had a high opinion of his cosmological work, it is rather ironic
that his own astronomical work did so much to put it out of date. In any
case, Kepler saw his cosmological ideas as drawn from an Ancient tra-
dition, essentially from the work of Plato, particularly his dialogue
Timeeus, and from the Harmonica of the Alexandrian astronomer
Claudius Ptolemy. Ptolemy’s treatise is mainly about the theory of
music, but it does also contain a sketch of a musical cosmology—
geocentric and much simpler than Kepler’s fully worked-out heliocentric
one. It is, however, the only surviving Ancient text to give a coherent
account of what is often called the music of the spheres.

Recent research has shown that the complicated combinations of
spheres used to explain planetary motion in medieval astronomical
texts can in fact be traced back to Ptolemy, and it seems possible that he
did believe in solid spheres. Kepler did not. In his first cosmological
work, the Sectet of the Universe (Mysterium cosmographicum), he refers to
such spheres as ‘“absurd and monstrous’, and he later asks to be shown
the shackles that bind the Earth to the sphere that causes its motion.
(Since Kepler was a Copernican, he believed that the Earth was one of
the planets.) From the point of view of the historian, Kepler is
conveniently given to laying his opinions on the line. One is never in
doubt, from his first work onwards, that he was a profoundly religious
Christian, a totally convinced Copernican, and a devout believer that
the Universe is mathematical and to be explained in terms of mathemat-
ics. To Kepiler, the natural world expresses the nature of its Creator, who
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CHAPTER 2 | Musical cosmology: Kepler and his reders

is a Geometer, and Man, being made in the image of God, is capable of
understanding it in mathematical terms. Indeed, it is his Christian duty
to do so.

He had presumably ecome familiar in his youth with the music used in
the Lutheran liturgy, but it is difficult to decide what music he might
have heard in his Iater life at the court of the Holy Roman Emperor

and italianate, which seems to have extended to music, but the little spe-

cific evidence known to historians suggests that while the performers

and ¢ composers whom he hlmmd were indeed Italian, their music was

up to date without being notably avant garde. Since in our own time it is
precisely the music of the avant garde—in particular, that of Claudio
Monteverdi—that seems important, one is left with the impression that
Kepler may not actually have heard any of the music that, with today’s
brand of hindsight, can be seen as pointing the way forward.

K_eplpr’c music thegry is cert am]v pnhrPlv conventional in its thth!Q
upon consonance as the sole foundation for music. His earliest refer-
ences, in the Secret of the Universe, are indeed merely to the simple ratios
of small whole numbers that define the string lengths corresponding to
the standard consonances. Here, Music very clearly takes second place
to Geometry, which provides the explicit basis of the cosmological

model by which the work is now best known, the system of nested poly-
hedra and planetary orbs (Kepler defines the orbs as spherical shells that
exactly contain the path of the planet). This model is shown at the
beginning of this chapter.

None the less, with the characteristic Renaissance faith in the wisdom

of the Ancients, Kepler expresses the hope that he will be able to
improve his rather clumsy theory of the connection between planetary
motion and music once he has read Ptolemy’s Harmonica. He was
apparently unaware that the work was already available in a Latin ver-
sion by Antonio Gogava, published in Venice in 1562. However, when
he did come across this edition, Kepler decided that it was based on a
corrupt text—in which today’s scholars agree with him. He eventually
obtained a Greek manuscript of the work.

Kepler had hoped that his astronomical calculations of more accurate
planetary orbits, using the observations made by Tycho Brahe, would
confirm the correctness of the polyhedral cosmology described in his
Secret of the Universe. In the event, the new more accurate orbits did not
agree more closely with the theory, which Kepler had in any case
already begun to modify. The result was his Five books of the harmony of
the world (Harmonices mundi libri V), published in Linz in 1619.

In this work, everything starts from geometry. The first two books
are concerned to establish hierarchies of reguiar polygons, the rank of a
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heavenly bodies that were believed to modify
their degree of influence), from Claudius
Prolemy, Harmonica, translated by Antonio
Gogava, Venice, 1592, p. 144.
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particular figure being established, in the first book, by how many oper-
ations—each using only straightedge and compasses—are required to
inscribe its side in a circle of given radius. In the second book, rank is
established by the polygon’s capacity to participate in forming tiling
patterns or polyhedra. There are numerous echoes of Plato’s Timeus
and Ptolemy’s Harmonica.

However, Kepler has departed from Ptolemy’s simple linking of
consonances with astrological ‘aspects’ (see Figure 1). It is the ranking
of polygons in the second book that determines their importance in
astrology (as explained in Book IV), whereas in the third book the ranking
of the first book is applied to music theory, the higher-rank polygons
dividing the circle (in the manner shown in Figure 1) to give the more
perfect consonances among the ratios of the parts. The result is a ranking
of consonances that corresponds to that given by Gioseffo Zarlino in
his Institutions of harmony (Istituiioni harmoniche, Venice, 1558), where
they are derived from pure numbers. However, Kepler correctly recog-
nizes that this system corresponds with that of Ptolemy, so Ptolemy
gets the credit for it and the name of Zarlino is mentioned only once.
Having devised his own geometry-based version of the system, Kepler
proceeded, in his fifth book, to apply it to his—that is God’s—heliocentric

planetary system
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quantities in the Solar system, for instance, in the perlods of the
planets—a case in which his lack of success is displayed in the form of
two tables. He found the ratios he was looking for in the extreme
speeds of the planets, that is their speeds when they are nearest to the
Sun (perihelion) and furthest from it (aphelion). He uses both the ratios
of extreme speeds for each individual planet and the ratios of extreme
speeds of pairs of ne1ghbourmg planets. The results are displayed in a
table, which is reproduced in our Figure 2.

The speeds are expressed as motions in arc, that is angular motions
as seen from the Sun—which means that to a Copernican they
represent actual motions in space (the Sun being assumed at rest). The
second column (headed Apparentes diurni, that is apparent daily
motions) gives the angular motions, in minutes and seconds of arc,
starting with the extreme values for Saturn and then working inwards
through the planets of the system. Each speed is given a letter of the
alphabet, to identify it when it is used elsewhere in the table. The third
column gives the ratios obtained for individual planets, and notes their
correspondences with particular musical intervals. The first column
gives the ratios obtained from extreme speeds of neighbouring pairs,
starting with Saturn and Jupiter, the first ratio being the ‘diverse’ ratio,
of the aphelion (minimum) speed of Saturn to the perihelion (maximum)
speed of Jupiter, and the second being the ‘converse’ ratio, that of the
maximum speed of Saturn to the minimum speed of Jupiter.

From these ratios, that is from the intervals they define, and setting an
arbitrary note as starting point, Kepler constructs two musical scales,
shown in our Figure 3, one in cantus durus (which does not quite corre-
spond to the modern diatonic major scale) and one in cantus mollis (which
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Figure 3. Scales in cantus durus and cantus
mollis, from Harmonices mundi, libri V, Linz,
1619, Book V, Chapter V. The symbol resem-

bling the modern sign for a double sharp rep-

resents a sharp; that resembling the
modern sign for a flat represents a flat.
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does not quite correspond to the modern diatonic minor scale). Kepler
has written ‘free’ (Vacat) beside one note in each scale. These pitches are
covered later, when he gives a complete compass of notes for each
planet (see Figure 4).

In the scales shown in Figure 3, some notes are marked fere, which
means ‘approximately’. None the less, closer inspection shows that
the approximations are very good ones, by any reasonable standards.
Unlikely as it may seem, the numerical relationships which Kepler has
found, and which he has chosen to express in musical form, are in very
good agreement with the values deduced from Tycho’s observations.

In fact, twentieth-century observational values of the velocities con-
cerned also yield ‘musical’ ratios (the modern definition of a musical
ratio being, for astronomical purposes, that it involves small whole
numbers, ‘small’ being deemed to go up to about 7). This in effect
merely confirms what we in any case know: that Kepler’s planetary
orbits are in good agreement with modern ones, the agreement being
(secular) changes since the late sixteenth century (when Tycho’s obser-
vations were made). The real puzzle, for today’s experts on celestial
mechanics, is how the Solar system came by these ratios, which are now
usually called resonances. A particularly spectacular set are observed
among the periods of the moons of Jupiter.

Kepler’s astronomy was, as we should say today, state of the art. So
too, but much less satisfactorily, was his music theory. At this time,
theoreticians of music simply could not cope with the way in which
composers made increasing and systematic use of dissonance for
expressive or dramatic purposes. Nor had adequate theoretical
solutions been found to the problems associated with tuning a number

of different instruments to play different lines of music together.
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Figure 4. Compasses of the planets, from
Kepler, Harmonices mundi, libri V, Linz, 1619,
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Performers worked with their own practical approximate methods, but
music was still claimed as one of the mathematical sciences. Intellectual
coherence between theory and practice was not to be achieved until the
eighteenth century, in the musical treatises of Jean-Philippe Rameau.

Kepler tried fairly hard to prevent his Harmony of the worid being put
on the Index of Prohibited Books, even pointing out that his system of
harmonies would be equally real in the Tychonic model of the planet-
ary system, in which all bodies except the Earth moved round the Sun,
which itself moved round the Earth, carrying them with it. This protesta-
tion did not work. Indeed, the 1630 Index for Rome simply bans all
Kepler's books. So one might not expect to find loyal supporters of
Papal authority among Kepler’s readers—and particularly not after the
condemnation of Galileo in 1633. But one would be mistaken. It is, of
course, impossible to know how many people actually read the
Harmony of the world. One can only consider those who chose to
mention the work in print. They were few. However, in the forty years
following the publication of Kepler's work there appeared two
extremely bulky treatises whose titles immediately suggest comparison
with it, namely the Harmonie universelle of Marin Mersenne, published
in Paris in 1636, and the Musurgia universalis of Athanasius Kircher,
published in Rome in 1650.

Mersenne’s family were peasants. He was born in a small village near
the town of Le Mans, and his rather old-fashioned crabbed handwriting
is probably a relic of his education at the village school. He joined the
religious order known as the Minims. His working life was spent in
Paris, where he became the centre of what amounted to an informal
academy whose members exchanged news and information about
mathematics and natural philosophy. Its members and correspondents
included many distinguished mathematicians, such as Girard
Desargues, René Descartes and the young Blaise Pascal, who was
introduced by his father Etienne Pascal. That is, as a clearing house for
scientific information, Mersenne was extremely impressive.

It is rather more difficult to be sure about his personal intellectual
qualities. Most of his works are extremely long—upwards of two thou-
sand pages, folio—and they sometimes seem to be putting forward two

contradictory views almost simultaneously. For example, in a little book
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published as an introduction to his huge treatise on music, he takes
about fifteen pages (octavo) to give a detailed account of the horoscope
for a perfect musician, but on the final page devotes a few lines to
saying horoscopes are all nonsense. The historian may be grateful for

lc nrlanr]
oriange

!:x..
3

the information that the exemplar of the perfect musician
Lassus (c.1532-94)—though it should be pointed out that astrologers
regularly falsified dates in order to obtain more appropriate horoscopes,
so the date Mersenne gives is no help in guessing Lassus” actual date of
birth—but-the blood ] 1 | 1 bili
of similarly brief (and thus easily overlooked) contradictions of wordily
expressed opinions in the two thousand pages of the Harmonie

universelle. In the circumstances, it is perhaps ln(‘k_v that the treatise

turns out to have surprisingly little to do with our present concerns.
What is universal about the work is not its concern with the cosmos but
rather its total scope. Celestial music is dealt with rather briefly.

It is clear that Mersenne not only understood and enjoyed music, but
was also very knowledgeable about the music of his day. His work is, in
fact, important for the number of musical pieces it preserves. It also con-
tains a huge array of illustrations of musical instruments. Reference to
the table des matiéres (an index) yields several references to ‘Galileo exam-
ined’ but none explicitly to Kepler, although his name does occur within
some entries, for instance in ‘Kepler's octave divided into twelve parts’
(under D, because it reads ‘Diapason de Kepler . . ."). Either Protestantism

was even hotter to handle than being ‘vehemently suspected of heresy’
by the Inquisition (its sentence on Galileo) or Mersenne simply was not
interested in the musical cosmology of Kepler's Harmony of the world. He
certainly had read the work, since he makes several references to it, for
instance in Proposition X of his book ‘On the usefulness of harmony’

(the penultimate item in the treatise, separately paginated). Here there is
an illustration—taken from Robert Fludd’s An account of both worlds . ..
(Utn'usque cosmi ... historia, Oppenheim, 2 vols., 1617, 1618), without
acknowledgement—to show very simple consonances among the
spheres of a Ptolemaic planet-ary system. When Kepler objected that no
astronomer could believe in this system any more and that Fludd was
concerned with a world of his own imagining, Fludd retorted that his
harmonies were in the Soul of the World, whereas Kepler’s were merely
in its Body. So much for agreement with observation! Mersenne, who is
usually seen as a proponent of the new natural philosophy, is here appar-
ently putting forward something completely out of date. He has earlier
briefly dismissed Copernicanism, and referred to Kepler's ideas as
fanciful, so perhaps we should see his parading this ostentatiously old-
fashioned cosmology as a defence against a possible imputation of advo-
cating innovation in astronomy. One could, also, put Mersenne back on
the side of the angels by suggesting that he did not have much time for
such old-fashioned stuff as celestial music.
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Though one may wonder about the astronomy, the music theory in
Mersenne’s treatise is certainly intended to be taken seriously. Indeed,
Mersenne even attempts to explain the emotive effects of music, with

music exciting specific emotions. The standard exemplar of this power
in action was Orpheus, who (according to the song in Shakespeare’s

... with his lute made trees
And the mountain tops that freeze,
Bow themselves when he did sing .. ..

Orpheus, ‘taken from an Ancient marble’, duly appears in the fron-
tispiece to Mersenne'’s treatise, although the quotation underneath is
from the Psalms (see Figure 5 overleaf).

Mersenne’s explanations of the ‘effects’” of music are not very satis-
factory. They deal mainly with the rather gentle use of dissonance
found in contemporary French music—which was, of course, what
Mersenne knew. Like Kepler, Mersenne is essentially dealing with the
kind of dissonances habitually used in the later work of Lassus. Kepler
was almost certainly relying on a secondary source that specifically
referred to Lassus, and Lassus’ reputation was high in France at the time
Mersenne wrote. In any case, in contrast to the mathematical nature of
the rest of his exposition, Mersenne’s treatment of dissonances and
their ‘effects’ is qualitative and imprecise, and does not, it seems, cause
him to re-think the otherwise conventional theory of music that he puts
forward. However, one can see that a genuine love of the music of his
own time was having an effect. The same is true of the music theory of
Athanasius Kircher, but in his case the effect seems to have been much
more drastic.

Athanasius Kircher was a Jesuit. He rose to high rank in the foremost
Jesuit College, the one in Rome. Like Mersenne he wrote a great deal,
and often at great length. His intellectual interests were multifarious,
and various passages from his works arc usually cited as marking the
beginning of modern interest in, say, deciphering Egyptian hieroglyph-
ics, considering the origins of volcanoes, or setting up public museums.
In his own day Kircher was certainly taken very seriously, but in ours
short extracts, punctuated with some of his many elegant illustrations,
can easily give the impression that he was, to put it bluntly, a weirdo. As
we shall see, the final book of his treatise on music tends to lend weight
to this impression.

However, the work as a whole does not. Kircher’s Musurgia universalis
is, like Mersenne’s Harmonie universelle, a musical encyclopaedia,
designed to teach the reader about music, but it is also about the place
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CHAPTER 2 | Musical cosmology: Kepler and his reders

Figure 5. Frontispiece to Mersenne’s
Harmonie universelle, Paris, 1636, showing
Orpheus, ‘from an ancient marble in the col-
lection of the most illustrious Marchese
Mattei, Rome’. Mersenne’s numbering of the
Psalm is taken from the \/n]orqrp in the

complete musical compositions, usually absolutely modern, and with
the highest praise for their excellence. One of the interesting things
abourt these judgements is that several of the composers Kircher praises
were also admlred about fifty years later, by Johann Sebastian Bach
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verse 22: ‘T will also praise thee with the
psaltery, even thy truth, O my God: unto thee

will I sing with the harp, O thou Holy One of

B 10
Israel.

writ cte’ af rmncie
with the efiects of mus: C, Ixl

cites recent (and not so recent) Italian examples, including, for ‘pain’

(dolor), a passage from a madrigal by Carlo Gesualdo, a composer

whose music was famous for its dissonance. In fact, Kircher cites
v — . cdi

most skilful in portraying emotion. Both compliments are the more

weighty when we remember that it was generally taken for granted

that newer music was better than older music. All in all, Kircher seems
prepared to accept a considerable degree of dissonance as a natural
component of music. But he cannot construct a mathematical theory
that explains how this works, and the tuning problem is not mentioned.

It seems likely that an awareness of these shortcomings in the math-

ematical theory played a part in determining the overall structure of

Musurgia universalis. Kircher begins with anatomy, that is, with the

LRt BT SLio. INIILLT CHM2is Wil alialLlil Jy dAias 25, WAL b

anatomy of the parts of animals that make sounds (see Figure 6).

One animal is singled out for a chapter all to itself: the three-toed
sloth (habitat South America). Kircher’s informant is said to be a mis-
sionary by the name of Johannes Torus. The sloth is alleged to sing up
and then down a perfect musical scale (an ‘ordinary scale’, Kircher says,

thereby ducking a few questions). Now this, as one might guess, turns

out not to be quite as it seems. The singer is not the sloth but the
Common Potoo, which is a bird. The potoo usually sings at twilight,
flattened against its perch on a tree beside the river. The sounds are
eerily pure, and do indeed form a descending diatonic scale. The belief
that the sound is made by the sloth is a piece of local folklore: to this

day, local Indians, who know a great deal about the animals they hunt,
know little about the sloth and find it rather an eerie animal. The
National Sound Archive, who kindly told me about the potoo, and
played me the appropriate tapes, did something of a double-take on dis-
covering that the folklore story went back to the seventeenth century.
Actually, it goes back at least to the sixteenth. After the sloth, we have
chapters about bird song, complete with songs written out on staves
(see Figure 7).

After this, Kircher turns to mathematical music theory, with, as we
have seen, not completely satisfactory results. Like Mersenne, he also
considers musical instruments, and explains, for instance, which note
corresponds to each string of a particular kind of viol. He devotes a
whole book to the ‘effects’ of music and another one to anecdotal
evidence of its magical powers.

Undaunted by the inadequacy of his music theory to explain human
(‘artificial’) music in mathematical terms, in his final book (Book X)
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page 22
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Harmoma I1L.d;, S
diey




CHAPTER 2 | Musical cosmology: Kepler and his reders

Figure 8.  Athanasius Kircher, Musurga
universalis, Rome, 1650, Plate XXIIL

‘Harmony of the World at its birth’, Tomus 11,

p- 266, beginning of Book X, illustration of
the Organ of the World. The planetary

system shown at the left is geocentric

Kircher goes into some detail on the subject of celestial music, which
he links not only with the structure of the cosmos but also (like
Dryden) with its origin. There is, however, nothing mathematically
precise about this, as can be seen from the illustration of the Organ of
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One could clearly decide to take this on a high metaphorical level.
However, Kircher does not leave the matter there. He proceeds to dis-
cuss harmonies among the motions of the planets. He dismisses Kepler,

Y Name, as misgui ,an n, withou ibution,
numbers. There is no explicit dismissal of Copernicanism. In fact,
Kircher simply reprints the table we showed in our Figure 2, and more

than a nace of the accompanvine text is taken wverbatim from the
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Harmony of the World (which, being on the Index, was in principle
unavailable to Kircher’s readers). Kircher was, of course, quite right to
guess that Kepler’s numbers were the best then available, but his method
of using them leaves one wondering what is the Latin for chutzpah.
Kircher does actually state that music has the force of a mathemat-

ical organizing principle in Creation, but he does not go into details.

There is, however, a certain amount of rather crude astrology. The
work in fact ends in a decidedly messy way. However, it is not only in
that respect that we are far from the orderly mathematical cosmology
put forward by Kepler. If one looks at the structure of the works as a
whole, it seems that Kircher has recognized the inadequacy of the

mathematical theorv of music, and has instead devised a rhpnrv that

............................................................

makes music itself a natural property of the World, as created by God.
Human music has its counterpart, or even, he hints, its origin in the
sounds made by animals and birds. There is a suggestion that South
America may have been the site of the Garden of Eden (hence the song
of the sloth). That is, Kircher is involving the world of living things in

what was traditionally an area for abstract mathematical rhpnﬂclng
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The chief thrust of the Scientific Revolution of the seventeenth century
was to extend the domain of mathematics (it is no accident that
Newton called his work Mathematical Principles of Natural Philosophy), so
Kircher was certainly out on a limb in this respect. However, his wealth
of information about the natural world, and about music, fits in rather
well with another characteristic of the Revolution: the systematic accu-
mulation of observations.

Kepler's work is important as the first mathematical cosmology
(however bizarre it may look to his present-day heirs), and it is in good
agreement with astronomical observation. It is, however, in rather
bad—if, by then, standardly bad—agreement with musical observation
and practice. A recognition of this failure of the standard music theory
may account for Mersenne’s apparent unwillingness to take cosmic

music seriously. However, Mersenne, in France in the 1630s, did not
have to face the inadequacy of music theory to expiain practice in quite
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such a radical manner as Kircher did in Rome in the 1640s. Kircher is,
moreover, notabie for having done nothing to try to make the problem
look less intractable. Instead he chose to go round another way, making
music seem less specially mathematical in the process. This did not

verv much. The solution was
ry lne sol as

tually help very much. The solution was eventually found in

more complicated mathematics, and, as in so many other branches of
natural philosophy, by ruling out certain questions as beyond the range
of a reasonable theory. The problems that got thrown out here were
] £ givi . £ the—effects—of . Fofd

musical significance of dissonance. Moreover, within about a century of
Newton’s work, it was clear to astronomers that one could no longer
equate the Solar system with the Cosmos. Thus, what was cosmology
to Kepler, Mersenne and Kircher became, for Newton’s successors, no
more than a theory of the Solar system. All the same, since human ego-
centricity gives human thought a persistent tendency to geocentricity,
‘the music of the spheres’ seems destined to remain a part of poetic

vocabulary.
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CHAPTER 3

The science of musical sound

Charles Taylor

Charles Taylor demonstrating an oboe to
some children.

This chapter complements the others by describing practical demonstrations
and experiments. In recent years a good deal has been said about the

differences in experiments in an elementary physics laboratory, mathematical

thnr\l and real musical instruments. In fact there are no real di frrg_n_cg_g
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except those arising from too simplistic an approach.
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for example, in ordinary speech the pressure just outside the mouth

bl

increases and decreases by not more than a few parts in a million. But
to be detected by our ears and brains as sound, these changes have to
be made fairly rapidly. This can be demonstrated easily by inflating a
balloon and then gently squeezing it between thumb and finger. This
creates quite large pressu
inserting a pin creates a change that can very readily be heard.
Scientists study the nature of the pressure changes using a cathode-ray
oscillograph that draws a graph of the pressure as a function of time. It
is interesting to look at the traces corresponding to a wide variety of

sounds and try to relate what is perceived by the ear-brain system with

‘th’)f
as
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is simultaneously perceived by the eye-brain system. It proves to
be impossible to make any but the broadest generalizations about a
sound by observing only its oscillograph trace. As an example, it is not
easy to differentiate between the oscillograph traces of the end of the
first movement of Mendelssohn’s Violin concerto, a symphony orchestra
‘tuning up’, and the chatter of an audience waiting for a lecture to begin
(see overleaf), although aurally they are completely different.

One of the most astonishing properties of the human brain is that of
recognizing sounds in a split second. For example, if a dozen subjects
are all asked to repeat the same word, an audience has no difficulty in
understanding what is being said. But for each one of the twelve, the
corresponding oscillograph traces is completely different and it is virtu-
ally impossible to find common features.

So here we have two different ways of presenting the same informa-

tion: the brain has little problem in 1nterpretmg the aural form, but the
visual form presents far greater difficulties.
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(a)

Oscillograph traces of three different sounds:

(a) the end of the first movement of the
Mendelssohn violin concerto;
(b) a symphony orchestra tuning up;

(¢) an audience waiting for a lecture to begin.
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The part played by the brain

Having introduced the topic of aural perception, we next elaborate on
its remarkable features, since it affects practically every experiment
done in the field of musical acoustics.

We first notice that the pressure of the air can only have a single value
at a particular point at a particular time. So, if you listen to a large orches-
tra of seventy players, each instrument creates its own characteristic
changes in pressure, but they all add together to produce a single
sequence of changes at the ear and there is only one graph of pressure
against time that represents the sum of the changes produced by all
the instruments. Yet, with surprisingly little effort, a member of the
audience can listen at will to the different instruments. The problem of
disentangling these instrumental components from the single graph
would be extraordinarily difficult for a computer, unless it were given
all kinds of clues about the nature of each different instrument, but the
human ear-brain system performs the miracle in a fraction of a second.

One of the factors that makes this possible is the learning ability of
the brain. Stored in our brains we all have the characteristic features of
all the various instruments that we have heard before and these can be
drawn on subconsciously to aid the disentangling process.
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An interesting example of this learning process is as follows. A
recording of synthetic speech can be created by first imitating the raw
sound of the vocal chords by means of an interrupted buzz on one
note, addmg chopped white noise to represent ss, sh and ch sounds and

unable to recognize the sentence that has been synthesized. However,
having been told what the sentence was, they have no difficulty in
recognizing it on a second hearing.
similar sounds in the memory banks at great speed, is vital to our
existence, but is also a great nuisance in psycho-acoustic research. Its

importance lies in the wav that we can ramrﬂv 1dPnr|fv sounds that
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indlcate danger, in the way that we learn to speak as babies, and in the
way that we can adapt to very distorted sounds and in many other activ-
iries. Adaptation to distorted sounds is illustrated if one listens to mes-
sages being relayed over ‘walkie-talkie’ systems to the police, to pilots
in flying displays, and in other circumstances where those used to the

system have no difficulty in nndPrctnndmo the messages, but outsiders
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find the speech hard to follow.

The problem in psycho-acoustic research arises because the very act
of performing the first experiment produces changes in the memory
banks of the subject. For example, consider an experiment on pitch
perception where a participant is asked to compare groups of sounds

and to sav which is the highest in mrr‘h Once the first group of sounds
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has been heard it is impossible for the subject to ignore those
sounds, and the response, at a latter stage, even to the same group of
sounds, is very rarely the same.

Another of the many remarkable properties of the brain that plays a
part in our aural perception is that of ignoring sounds which are of no

importance to us. If a series of sounds—such as a baby crying, a dog
,

barking or a fire engine’s siren—were played while someone continued
to speak, then the listeners will continue to hear what is being said,
because they rapidly identify the extra sounds as of no personai relevance.

Differences between music and noise

The above examples are of relatively complex sounds and it is difficult
o urdw (_lCdr b(_lCrlllIl(_ ulblln(.ll()nb DC[WCCH music dl’lu noise Wll}l
sounds of this complexity. The two simplest kinds of sounds that occur
in studies of sound are white noise and a pure tone. Musically useful
sounds consist of mixtures and modifications of these two basic kinds
of sound—pure tones and noise.

The oscillograph trace of white noise shows no element of regularity
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(a) oscillograph trace for white noise
(b) oscillograph trace for a pure tone
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corresponds to the loudness of the sound. (It is possible, of course, to
‘colour’ noise by filtering ourt various frequency components, but then
it can no longer be described as “white’.)

The oscillograph trace for a pure tone is that of a sine wave and is
completely regular. There are now two parameters that matter: the
amplitude which, as before, relates to the loudness, and the frequency
which relates to the pitch of the note. Many textbooks tend to keep
these two parameters separate, but in fact they are linked, again
because of the mechanism of perception. For example, listen to a pure
tone of frequency 440 Hz (the note with which the tuning of orchestral
instruments is checked) at a relatively low amplitude. Then, without
changing the frequency, increase the amplitude very suddenly. The
loudness will increase, and many people will also detect a change in
pitch. With a fairly large audience one usually finds that about a half
hear the pitch go down, rather fewer hear it go up, and a few hear no
change. This is a dynamic effect that only occurs with sudden changes
and only with fairly pure tones.

Sources of musical sounds

Many common objects have a natural frequency of vibration that can
be excited by striking or blowing. All kinds of tubes, or vessels with a
narrow opening, for example, will emit a sound if the opening is struck
with the flat of the hand. In this case it is the air that is vibrating and, if



Oscillograph trace from a tube when a cork
in one end is suddenly withdrawn; the

vertical lines correspond to the natural
resonant frequency of the tube.

CHAPTER 3 | The science of musical sound

the natural frequency lies within the sensitivity range of the human ear
(about 30-18000 Hz in young people, although the upper sensitivity
declines rapidly with age), a musical sound is heard. When a cork is sud-
denly withdrawn from the end of a tube a compression wave travels
back and forth in the air in the tube. Although its amplitude rapidly
decays, as shown above, the time taken for each transit determines a
discernible musical pitch in the short-lived sound.

In order to convert this into a usable musical instrument, we must
feed in energy to keep the wave travelling up and down for as long as
the note is required. This can be done by blowing across the end with
such a speed that the edge tone generated as the air jet strikes the edge
has an oscillatory frequency that matches the natural frequency of the
tube. Alternatively a reed can be used. All reeds are, in effect, taps that
allow pulses of air to pass through at a well-defined frequency, which
again can be made to match that of the pipe. The lips form the reeds in
the brass family of instruments, single or double strips of cane form the
reeds of the woodwinds.

Similar arguments can be applied to the vibration of strings.
Transverse vibration of strings can be excited by striking (as in the
piano or clavichord), or by plucking (as in the harp, guitar or harpsi-
chord). But to convert such short-lived notes into those of much longer
duration, energy must be fed in to maintain the vibration. In modern
electric guitars various forms of electronic feedback can be used, but
the traditional method, used in the orchestral string family, is by
bowing. This depends on the difference between the static and dynamic
frictional properties of resin. Powdered resin adheres to the
microscopic scales of the horse-hair used in bows: when the bow is
placed on the string the static friction is high but when moved to one
side the string sticks to it and is also moved to the side. Eventually the
restoring forces created in the string overcome the static friction, and
the string starts to slip back to its neutral position. Dynamic friction,
which is very much lower than the sratic fricrion, allows the string to
move easily under the bow, overshoot the neutral position, come to
rest, and then be picked up once more by the static frictional force
to repeat the cycle.
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Harmonics, overtones, and privileged frequencies

Although most objects have a natural vibration frequency, the real situ-
ation is much more complicated. An easy way to approach these com-

3

by giving a slight push once in every cycle of the swing—but the timing

is all important and it is just as easy to bring the swing to a standstill if
the push is applied at the wrong moment. The right moment is just
after the swing has started to accelerate from one of the extreme posi-
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tions and the push must obviously be in the same direction as the move-
ment of the swing. But the swing can also be kept going if a push is
given every second time the swing reaches the optimum position, or
every third time, and so on. Equally, if the person pushing gives a push
(some of which, of course, will not connect with the swing) at twice
the natural frequency of the swing, or at three times the natural fre-
quency, the pushes that connect with the swing will still be at the right
frequency to maintain the oscillation.

Consider the tube discussed earlier. The oscillation can be main-
tained if the hand is repeatedly slapped on the end of the tube at its
natural frequency f. But, as with the swing, it could equally well be
excited at frequencies 2f; 3f, 4f, 5f, etc. and also at frequencies 5 f, 5 f, 3 f;
etc. Indeed, it can also be excited at 3 f, 5 £, 3 f, and at many other pos-
sible frequencies.

The frequencies commonly discussed in connection with musical
instruments are f, 2f; 3f, 4f, etc., which are usually termed harmonics (see
Chapter 1). In practice, because of end effects, the effect of the diameter
of a pipe, and many other complications, a simple tube will not resonate
precisely at the harmonic frequencies—but in spite of this musicians still
1l them harmonics. Scientists know them as overtones.

The remaining frequencies of the type 5 f, 5 f, or ; f, 3 f;, etc., are known
as privileged frequencies (and strictly speaking, the harmonics are privi-
leged frequencies as well). The following table shows a list of the har-
monics and privileged frequencies for a tube open at both ends with a
basic natural frequency of 240 Hz: the numbers in bold type are the

PN A
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120 240 360 480 600 720 840 960 1080 1200

180 246 300 360 420 480 540 600
40 80 120 160 200 240 280 320 360 400
30 60 90 120 150 180 210 240 270 300

24 48 72 96 120 144 168 192 216 240

g
<
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Notice that some of the privileged frequencies (such as 120 and 60)
occur more than once, and if the table were still further extended
others would occur. These frequencies are easier to excite than the ones
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‘I'raditional diagrams showing the graphs of
the displacements in open and closed pipes:
{a) open, frequency f

(b) open, frequency 2f

(c) open, frequency 3f

(d) closed, frequency f

(&) losed. frequency 3f

{e) closed, frequency 3f

(f) closed, frequency 5f.
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(a) {b) (e

Impedance view of the behaviour of tubes

In the elementary approach to the behaviour of vibrations in tubes, use
is made of the fact that a compression becomes an expansion on reflec-
tion at an open end, but stays a compression when reflected from the
end of a closed pipe (see above). This must obviously be so, as the
reflection at the end of an open tube must add to the outgoing wave to
produce no excess pressure, and must therefore be an expansion. For
the closed pipe there is obviously maximum pressure at the end.
Problems arise if the pipe is not precisely cylindrical for the whole of
its length and it is then no longer possible to draw convincing diagrams
based on the simple theory. Measurement of the input impedance of a
tube as a function of frequency leads to a more satisfactory argument.
The figure (a) overleaf shows such a diagram based on the work of
Arthur Benade. The difference in behaviour between edge-tone instru-
ments and reeds can be explained without assumptions about open or
closed ends. Edge tone excitation involves only small changes in pres-
sure, although the displacements are high. Thus it is a low impedance
device (analogous to a low-voltage high-current electrical device) and,
as can be seen from the diagram, this leads to a full series of harmon-
ics. A reed, on the other hand, involves relatively low air flow but high
pressure changes, and is thus a high impedance device, which can be
seen from the diagram to involve only the odd harmonics, but the fun-
damental is an octave lower than that for a low impedance instrument.
The input impedance curve for a pipe with a series of side holes (as in
most woodwind instruments) is shown in figure (b); the existence of a
cut-off frequency can be clearly seen. The input impedance curve for
a conical pipe is shown in figure (c). Notice that the peaks and troughs
occur together at aimost exactly the same frequency; thus it no longer
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(a) Curve showing the relationship between
input impedance and frequency for a plain
cylindrical pipe.

(b) As (a), but with a regular series of side
holes.

(c) Input impedance plotted against frequency
for a conical pipe.

Clarinet and Trumpet.
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(a)

Input impedance

Harmonic numbers
Reed excitation
Edge-tone excitation 1 2 3 4 5 6

Frequency

e
DRI AN

(b)

Input impedance

Harmonic numbers Frequency
Reed excitation 1 3 5 7 9 11 13
Edge-tone excitation 1 2 3 4 5 6

(c)

Input impedance

Harmonic numbers I T | 1 | |
for both reed and 1 2 3 4 5
edge-tone excitation

Frequency

matters whether the pipe is excited by edge tones or reeds, and the full
series of harmonics is always produced.

Such diagrams have also been used by Benade to explain the behav-
iour of trumpets, which seem to produce a full series of harmonics in
spite of being largely cylindrical and closed by the player’s mouth.
Changes are produced in the input impedance curve, first by the addi-
tion of the bell and then by the addition of the mouthpiece, and the
result is a full sequence of harmonics.




Three plastic tubes used to illustrate the
influence of the finger holes on the tone
quality of a clariner: in (a), the rube has no
side holes and the tone is muffled; in (b),
there are five large holes and the tone is
much more clarinet-like; in (c), there are
three small holes and the tube is unplayable;
however, if one or more of the holes are

covered, a note can be sounded.

CHAPTER 3 | The science of musical sound

{a)

Turning a cylindrical tube into a clarinet

Just as the trumpet involves departures from a plain cylindrical tube, so
does a clarinet. The important departures are the side holes which, even
when closed, produce regular ‘bumps’ in the bore, and these have a
profound effect. There are at least three functions that have to be
performed by the side holes if a clarinet is to behave like a real musical
instrument. The first, and most obvious, is that they determine the
vibrating length, and hence the pitch of a given note. Secondly, they
radiate the sound (very little of which emerges from the bell, as can be
demonstrated easily with a microphone and oscilloscope) and, being
arranged in a regular sequence, are frequency-sensitive. Thirdly, there
must be a balance between the energy reflected back towards the reed
to keep the oscillation going, and the energy radiated away. The
position and spacing of the holes has a considerable influence on this.
A clarinet maker must be able to adjust at least these three functions
independently and, in order to do this, makes use of the positions of the
holes, their diameter, the wall thickness at the hole, and the bore
diameter throughout the length. The diameter varies along the whole
length and is adjusted either by using a reamer to enlarge it slightly at a
particular place, or by using a special brush to paint lacquer on the wall
to reduce the bore.

The quality of a musical sound

At quite an early stage in the study of musical physics, it was thought
that a vibrating body that could vibrate at a number of discrete
harmonic frequencies could probably vibrate in several at once, and
that the resulting combination of a number of harmonics could be the
source of variations in quality. The wave-forms of various instruments
were studied, and it seemed clear that their regular waveforms could be
subject to Fourier analysis; thus, if the harmonics could be generated in
the right proportions, the sound of any instrument could be imitated.
The Hammond and Comprton electronic organs, both developed in
1932, used the principle of harmonic mixture to determine tone quality.
But, as is now well known, the sound of these organs was noticeably
‘electronic’, and we need to ask why.
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(i)

Oscillograph traces for notes on (a) a flute;
(b) a clarinet; (c) a guitar: in (i), the trace lasts
for one hundredth of a second; in (ii), the
trace lasts for one tenth of a second; in

(in1), the trace lasts for one second.
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(iii)

The oscillograph traces for three instruments (flute, clarinet and
guitar) are obviously different, and over a period of s second all three
appear to be fairly regular. However if we look at traces lasting i
second, or 1 second, it immediately becomes obvious that they are far
from regular. It turns out that it is these departures from regularity that
tell the brain that a ‘real’ instrument is involved, rather than an electron-
ically synthesized sound. Nowadays, of course, synthesizers have
become so sophisticated that departures from regularity can be imitated.

There are many causes of these variations in real instruments, but
probably the most significant from the point of view of recognition by
the brain is the way in which the note is initiated. Most instruments
involve at least two coupled systems: the strings of a violin and the
body, the reed of a clarinet and the pipe, the lips of a player and the
trumpet itself, and so on. When any coupled system begins to oscillate,
one of the systems begins to drive the other in forced vibration.
Because of the inertia of the second system, there is a time delay in the
commencement of the forced vibration and it may take as much as
% second before the whole settles down. But this first tenth of a second
is crucial: it is called the starting transient and every instrument has its
own characteristic transient. It is the transient that the brain recognizes,
and so permits a listener to identify the various instruments in a
combination. Mathematically, the solution of the differential equation
for the coupled system is the sum of two parts, the steady state part and
the transient part.

Combinations of notes

The phenomenon of beats (rises and falls in amplitude) is well known,
and can be demonstrated most easily by sounding the same note on
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two recorders and then slightly covering the first open hole on one of

them to flatten its note slightly. If the two notes have frequencies of

480 Hz and 477 Hz, the beats occur 3 times per second.

,
MR~ A~ AR~ A
responding in frequency to the difference of the two sounding notes can

Trace for notes of frequencies 480 and

477 Hz, sounded simultaneously.
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plicated as there are also sum tones, and there are secondary sum and

be heard; this is known as the difference tone. The result can be very com-
difference tones between the primary sum and difference tones.

line represents a note of fixed frequency; the

sloping thick line represents a note whose
frequency commences from that of the fixed

Diagram representing some of the results of
adding two pure tones. The horizontal thick
note and then glides smoothly upwards
through one octave. The frequency ratios

represented by the lower case letters are:

(f)3;0:59;(g51:2.

o

J

(=)

XL

1
The above diagram shows the result of performing Helmholtz’s

J L

hypothetical experiment of sounding one note continuously and bring-

ing a second note from being in tune with the steady note to a pitch an

1

~

<

T'he thick lines represent the frequencies of the two

12

1 1

1

octave higher.
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(g)

Wave traces of two simultaneously sounded

pure tones; the frpr__}npnry ratios rnrrpcpnnrl

t0 those listed in the previous caption. notes actually being sounded, and the thin lines represent all the
various possible sum and difference tones. It can be seen that when the
ratio of their frequencies is relatively simple, the number of tones
present becomes less. It has been suggested that these tones sound
pleasant because fewer notes are involved; also if the wave traces are
studied, the simpler ratios give less complicated wave forms. The
above diagram shows wave traces for pairs of notes with various
frequency ratios.
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begin to account for the phenomena of
consonance and dissonance. But there are further complications. The
ear-brain system is non-linear only for rather loud sounds, but the sum
and difference, and dissonance phenomena, occur even for very low
amplitudes.

Also, if three tones are sounded together-—say, 400, 480 and 560 Hz—
a qulClCIlCe tone at 80 HZ can UC llCdlu qu C}eally even at lUW dIIlPll
tudes: 80 Hz is the fundamental of the series of which the sounding
notes are the 5th, 6th and 7th harmonics. Now, if the frequencies are all
raised by the same amount to 420, 500, 580 Hz, although the difference
is still 80 Hz, the perceived tone is found to go up by about 10 Hz. The
three notes are now the 21st, 25th and 29th harmonics of a fundamental

_C oAn R T W [ o ETRDRE T N
o1 20 l_lL dluluug[l this note cannot be heard. This odd pnenomenon,
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sometimes called the residue effect, provides yet one more example of the
inadequacy of simple theories to explain musical phenomena. Nor is it
an inconsequential complication: the tone of the bassoon, for example,

y
damental of any given note. Most of the energy lies in the 5th, 6th and
7th harmonics and the ear-brain system ‘manufactures’ the fundamen-
tal using this residue phenomenon.

Computer simulations for two different
low-frequency modes of the front plate
of a guitar.

The bodies of stringed instruments

[a W)

Earlier, we mentioned the coupled system incorporating the strings an

¢ out that t
s out I

o ]‘\f\ AYS ﬁF an incrrnmpnr
Liice U U Vi oa 1 194 L) § 29

L UVLy i

like a violin or a guitar performs an extraordinarily complicated func-

amily It tmarn
amily. It turn
tion in transtorming the vibrations of the strings into radiated sound.
Stradivari, Guarneri, Amati and others obviously solved the problem of
making the right kinds of bodies in a purely empirical way and,

although physicists can lend assistance to instrument makers in arriving
more rapidly at an acceptable solution, the secret of the success of the
o means understood. It is clear that

Cremona school and others is by
eo
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CHAPTER 4

Faggot’s fretful fiasco

Ian Stewart

The title page of Daniel Strihle’s
paper on placing the (rets of a stringed
instrument.

Musical instruments using fixed intervals, such as pianos and guitars, generally
use the equal-tempered scale, so that tunes can be played in different keys.
Deciding where to put the frets on a guitar depends, in effect, on finding an

approximate construction for the twelfth root nf 2. In 1743 a Swedish r‘rnﬁ'c-

OXL? or He Lyt O ian i/ veplan

man, Daniel Strdhle, found a surprisingly simple and good construction, which
unfortunately was dismissed by the mathematician Jacob Faggot owingto a
mathematical mistake which Faggot made in checking the calculation. The
mathematics underlying Strihle’s construction is in fact very beautiful and
revealing.

If you look at a guitar, mandolin, or lute—any stringed instrument with
frets—you’ll see that the frets get closer and closer together as the note
gets higher. This is a nuisance for the player, because there’s less room
to fit the fingers in and because the distances you move your finger to
get higher notes is not proportional to that for lower ones. But there’s
a good reason why the frets have to be spaced the way they are: the
notes won’t sound right otherwise. This is a consequence of the physics
of vibrating strings. Today’s Western music is based upon a scale of
notes, generally referred to by the letters A-G, together with symbols +
(sharp) and b (flat). Starting from C, for example, successive notes are

ct ot F! Gt AY
C D E F G A B
D B G A B

and then it all repeats with C, but one octave higher. On a piano the white
keys are C D E F G A B, and the black keys are the sharps and flats.

This is a very curious system: some notes seem to have two names, while
others, such as B, are not represented at all. It is a compromise between
conflicting requirements, all of which trace back to the Pythagorean cult of
ancient Greece. As we saw in Chapter 1, the Pythagoreans discovered
that the intervals between harmonious musical notes can be represented

by whole number ratios. Thev demonstrated this pYnanan"v usino a

Aty eulliQiistiatea s Lapeininienlall wollip &

rather clumsy device known as a canon (Figure 1), a sort of one-string
guitar. The most basic such interval is the octave: on a piano it is a gap of
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Figure 1. The canon, an experimental device used by the ancient Greeks to study
. . ~ . 1 .

: ; 2 ;
note an octave above base note; (¢) string % the length (ratio 4: 3) sounds note a fourth
above base note; (d) string 3 the length (ratio 3:2) sounds note a fifth above base note.

eight white notes. On a canon, it is the interval between the note played
by a full string (Figure 1a) and that played by one of exactly half the
length (Figure 1b). Thus the ratio of the length of string that produces

N Lo 1o el &
1

~ el PRSP S ) VU . USSR DI ST SIS o o) S .
d glVCll HULC, LU LIC IC lgL 1 tlidL PlUuuLCb I VLLAVE, 1Y 4. 1. 111

is is true
independently of the pitch of the original note. Other whole number
ratios produce harmonious intervals as well: the main ones are the
fourth, aratio of 4: 3 (Figure 1c), and the fifth, a ratio of 3:2 (Figure 1d).

Starting at a base note of C these are

C D E F G A B C
base fourth  fifth octave
1 2 3 4 5 6 7 8

and the numbers underneath show where the names came from. Other
intervals are formed by combining these building-blocks.

You can find these ratios on a guitar. Place your left forefinger very
lightly on the string, and move it slowly along while plucking the string
with the right hand. Do not depress the string so that it hits any frets. In
some positions you'll hear a much louder note. The easiest to find is the
octave: place your finger at the middle of the string. The other two
places are one third and one quarter along the string.

All guitarists recognise the basic intervals octave, fourth, and fifth. In
combination with the fundamental they form the common major chord.

A standard 12-bar blues, in the key of C, employs the chord sequence
C/1 Clr ClrClirEIDEICHECHE GIIEENTCHE G

or a near variant (often with seventh chords instead of major ones in
the fourth and final bars). Like this, perhaps:

[

got those inhar- monious, Pythagorean blues. I got those

G c/ /1 C/// clil T/

inhar- monious, Pythagorean blues Got no
E/ /7 FE// /7 C/1 Cll

har and no mony, an’ my guitar’s blown a fuse . ..
G / /o E/ /1 Cll G/l

A more traditional song, which comes close, is Frankie and johnny.
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It is thought that, in order to create a harmonious scale, the
Pythagoreans began at a base note and ascended in fifths. This yields a
series of notes played by strings whose lengths have the ratios

o 27 81 243
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Most of these notes lie outside a single octave, that is, the ratios are
greater than 7. But we can descend from them in octaves (dividing suc-
cessively by 2) until the ratios lie between 1 and 3. Then we rearrange

Figure 2. Scale formed purely from fifths
and octaves approximates the white notes on
a piano.

the ratios in numerical order, to get

© 81 3 27 243

1 35 s 2z 16 128
On a piano, these correspond approximately to the notes
CDEGAB.

As the notation suggests, something is missing! The gap between ¢; and
3 sounds ‘bigger’ than the others. We can plug the gap neatly by adding
in the fourth, a ratio of 3, which is F on the piano. In fact, we could have

m{‘nrnnrared it from the start if we had descended from the base note hv

2

a fifth, adding the ratio 3 to the front of the sequence, and then
ascended by an octave to get 2.3) = (3).

ximately to the white notes on
successive notes, also expressed as ratlos There are exactly two differ-
ent rati O HC wne B drlCl lﬂC .SlelOnC 243" I‘LU lnu:rle ()I two mel[()l’le
256 5536

is (53)% Or %sus, which is approximately 1.11. A tone is a ratio of
2 =1.125. These are not quite the same, but nevertheless two semitones

pretty much make a tone. Thus there are gaps in the scale: each tone

must be divided up into two intervals, each close to a semitone.

There are various schemes for doing this. The chromatic scale starts
with the fractions G)" for n = —6, —5,..., 5, 6. It reduces them to the
same octave by repeatedly multiplying or dividing by 2, and then places
them in order: the result is shown in Figure 3. Each sharp bears a ratio

2187

Soas tO the note below it, and from which it takes its name; each flat

bears a ratio 1= to the note above. There’s a glitch in the middle: two
notes, F* and G, are trying to occupy the same slot, but differ very

slightly from each other.

63



Music and mathematics

256 2187
243 2048
c o b F E F/_l—;%/\ G A A B B C
26 9 32 81 4 3 s 7 16 243
1 243 E 7 o+ 7 7 o T .28

Figure 3. Chromatic scale of twelve notes,

incorporating the black notes (sharps and
flats); F* and G, are trying to occupy the
same slot.

U 1}
729
256 2187 256 2187 256 2187 256 256 2187 256 2187 256
243 2048 243 2048 243 2048 243 243 2048 243 2048 243

There are many other cthmPc’ also ]Par‘ing to_distinctions between
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sharps and flats, but they all involve a 12-note scale that is very close to
that formed by the white and black notes of the piano.

The reason for the glitch in the chromatic scale, and the reason that
there are many different schemes for building scales, is that no ‘perfect’

1 r 2 72 ... Mt=2

for a fixed number r. The Pythagorean ratios involve only the primes 2
and 3: every ratio is of the form 2°3" for various integers a and b; for
instance, 133 = 2~ 73°. Suppose that r = 23" and r'* = 2. Then 2'%3'% =
2, 50 2" =371 But an integer power of 2 cannot equal an integer

power of 3, by uniqueness of prime factorization. Similar arguments

show that no fixed integer ratio can work.

This mathematical fact puts paid to any musical scale based on
Pythagorean principles of the harmony of whole numbers; but it doesn’t
mean we can't find a suitable number r. The equation "> =2 has a
unique positive solution—namely:

r =122 =1.059463094 ... .

The resulting scale is said to be equally tempered, or equitempered.

If you start playing a Pythagorean scale somewhere in the middle—
a change of key—then the sequence of intervals changes slightly.
Equitempered scales don’t have this problem, so they are useful if you
want to play the same instrument in different keys. Musical instruments
that must play fixed intervals, such as pianos and guitars, generally use
the equitempered scale. The Pythagorean semitone interval is 335 =
1.05349 ..., which is close to '3/2, so the name “semitone’ is used for the
basic interval of the equitempered scale.

How does this lead to the positions of the frets on a guitar? Think
about the first fret along, corresponding to an increase in pitch of one
semitone. The length of string that is allowed to vibrate has to be 1/r
times the length of the complete string. So the distance to the first fret
is 1 — (1/r) times the length of the complete string. To get the next dis-
tance, you just observe that everything has shrunk by a factor of r, so

the spaces between successive frets are in the proportions

1 1/r /7 /7
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Figure 4. Distances between guitar frets
shrink for the higher notes.

{—%.—L Aruc e, /W/\ n \
=

7is bi , Ti ,an n
that the distances between successive frets are smaller (see Figure 4).
When the Greeks were faced with numbers such as '32 that cannot

be written as exact fractions—which rhpv called irrational numbers—

they usually resorted to geometry. According to tradition, Greek geom-
etry placed considerable emphasis on those lengths that can be
constructed using only a ruler and a pair of compasses: for example,
squares and square roots can be so constructed (see Box A).

The ancient problem of ‘duplicating the cube’ asks for such a con-

struction for 3 I7 This nroblem is rrqrhnnnn"v orouped together with two

............ A a2l pROLECIIL IS RSN AV YR AUt WAl L

other problems: three left-overs from Greek geometry, which ask for con-
structions, using only an unmarked ruler and a pair of compasses, for:

(a) asquare whose area is the same as that of a given circle;

/h\ an angle one third the size of a ¢iven angle:

il allgat LIt s s L] giv a 15

(c) the side of a cube that is twice the volume of a given cube.

They are known, respectively, as the problems of squaring the circle,
trisecting the angle, and duplicating the cube. The transcendence of 7,
proved by Ferdinand Lindemann in 1882, proves that it is impossible to

Box A: Construction of squares and square roots

Constructing squares and square roots with ruler and compasses, given
a line of unit length.

Squares: Draw a right triangle AOB with OA = 1, OB = x. Find the mid-
point M of AB and draw MC perpendicular to AB to meet the extension
of AO at C. Draw a semicircle with centre C through A, to meet the
extension of AO at P. Then OP has length x*.

Square roots: Draw a line AOB with OA = 1, OB = x. Find the midpoint
of AR and draw ¢ ntre M th oug“ Rand A Draw OP

M e se e r
M of AB and draw the semr e centre M thr
Then OP has length x.

{1 O Qilld A, 1/lavw UL

perpendicular to AB to cut the semicircle at P.
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square the circle. The other two problems are also insoluble under the
stated restrictions. Before I explain why, it is worth examining the his-
tory of these problems in a little more detail, because the usual version
of the story tends to produce serious misconceptions.

The first point to make is that the ancient Greeks could solve all
three problems. They knew how to find 7, they knew about ?{2, and
they encountered no difficulty, either theoretical or practical, in split-
ting an angle into three equal bits—not if they respected the restriction
to an unmarked ruler and a pair of compasses, of course, but those
restrictions were not widely adhered to by the great mathematicians of
ancient Greece. Eutocius, a commentator from the 6th century Ap,
describes a dozen different methods for duplicating a cube. Several are
based on so-called neusis constructions, which involve sliding a marked
ruler—a ruler with a single distinguished point on its edge—along some
configuration of lines until some particular condition holds. Others
make use of conic sections; and there is a stunning three-dimensional
construction that makes use of a cylinder, a cone, and a torus. There are
fewer reports of methods for trisecting angles, possibly because there
exists an extremely simple and obvious neusis construction (see Box B).

A general method for dividing angles by any whole number whatso-
ever, attributed to Hippias, makes use of a transcendental curve called
the quadratrix. The quadratrix can also be used to square the circle; and
Archimedes, in a surviving fragment that exists only in a much later edi-
tion, proves a result which in current terminology states that 7 lies

Box B: Neusis construction for trisecting an angle

To trisect the angle ABC draw a circle with centre O whose radius is
equal to the shaded length marked on the ruler. Draw OD parallel to BC.
Lay the ruler to make PQ = OB; then triangles OBP and POQ are isosce-
les. If angle POQ = 6; then angle PQO = 6. Then angle OPB = 26, so
angle OBP = 26. Also angle PBC = 6, so angle ABC = angle OBC = 36.
Therefore, angle PBC trisects the angle ABC.

A

D
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between 32 and 3%. David Fowler argues that Archimedes may have
been trying to evaluate the continued fraction of 7, and that the Greeks
used continued fractions fairly systematically as a way of forming
hypotheses on the rationality or irrationality of particular numbers.

l‘ PO S A
A commucaﬂ’actwn i$ an cxp sion Of 1nhe 1orm
1

a,+
a + -1 :
a+ ——

+——

a3
which we (mercifully) abbreviate to [ag; 4,, 4;, a3, . ..]. If Fowler is cor-
rect, Archimedes had got as far as [3; 7, something =10]. Had he got as

£, 2.7 18 1 mothi =>20071 ho micht nth L t
tar as a7, 15, 1, sometning == 2ZUuj, N¢ mignt weu nave Degun to won-

der whether 7 might actually be rational, for such unusually large
terms normally appear in incomplete developments of rationals.

At any rate, the master mathematicians of classical Greece were per-
fectly happy using marked rulers and transcendental curves if they
needed them. Where, then, did the restriction to constructions with

[a W

mere hack, who explicitly and not very politely criticised the great mathe-
maticians of earlier times for not respecting restrictions that he imposed
several centuries later. In short, the now notorious problems ‘bequeathed
to us by the ancient Greeks” were not actually problems that the ancient
Greeks, the greats, the real mathematicians, ever worried about. It is not
unusual for the history of ma W

Be that as it may, later mathematicians took Eutocius’s restrictions
seriously, and wondered whether constructions might exist that obeyed
them. Eventually they proved that there are none, by invoking algebraic
methods. Any geometric construction that obeys Eutocius’s restrictions

can be broken down into elementary steps and interpreted as a series

can be constructed in the prescribed manner must solve a polynomial
equation—indeed, one of a fairly special kind. Duplicating the cube
amounts to solving the cubic equation x’ =2, and this cannot be
reduced to a series of quadratics. It follows that there is no ruler-
and-compass construction for 22 either. For if there were a ruler-and-
compass construction for 22, then by squaring twice (using ruler and

1|d construct 3\/2, which we know is

asses as in Box A) we con
asses as BoxX A) we couia construct n € Know 18

impossible. So there can be no ruler-and-compass construction for '22.

The equitempered scale is a compromise, an approximation. The
true fourth sounds more harmonious than the equitempered fourth,
and singers find it more natural. Since the equitempered scale is a com-
promise we may ask whether there is some approximate geometrical
guitar. Not only

is there an approximate construction, but it has a very curious history.
The story illustrates the deep elegance of mathematics, but it is also a
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humbling tale: an outstanding triumph of a practical man nullified by a
professional mathematican’s carelessness.

In the sixteenth and seventeenth centuries, finding geometrical meth-
ods for placing frets upon musical instruments—lute and viol, rather than

68

olitar—was a2 serionus nractical auestion. In 1581 Vincenzo Galile
guitar was a se€rious practicai estion. 1n i>sl CENZo Laiue

joo]

father of the great Galileo Galilei, advocated the approximation

2 =1.05882....

turies. In 1636 Marin Mersenne, a monk better known for his prime

numbers of the form 2 — 1, approximated an interval of four semitones
by the ratio 2/(3—2). Taking square roots twice, he could then obtain
a better approximation to the interval for one semitone:

JJ(Z/(3 \2)) = 1.05973 ...,

involves only square roots, and thus can be constructed geometrically as
in Box A. However, it is difficult to implement this construction in prac-
tice, because errors tend to build up. Something more accurate than
Galilei’s approximation, but easier to use than Mersenne’s, was needed.

In 1743 Daniel Strdhle, a craftsman with no mathematical training,
published an article in the Proceedings of the Swedish Academy presenting

a sim ]P and nmrnml construction. Let QR be 12 units Iono divided into

12 equal intervals of length 1. Find O such that OQ = 0OR =24.Join O to
the equally spaced points along QR. Let Plie on OQ with PQ 7 units long.
Draw RP and extend it to M so that PM = RP. If RM is the fundamental
pitch and PM its octave, then the points of intersection of RP with the 11

successive rays from O are successive semitones within the octave—that
is, the positions of the 11 frets between R and M (see P re 5).

For practical purposes, Strihle realised that (by 51m11ar triangles) a
single diagram could be employed with finger-boards of different
lengths (see Figure 6).

You might like to try it out, and compare with measurements from
an actual instrument. But how accurate is it? The geometer and econo-

mist Iqrnh Faggot nprfnrmpd a trigonometric calculation to find out

and appended it to Strihle’s article, concluding that the maximum error
is 1.7%. This is about five times more than a musician would consider
acceptable.

Faggot was a founder member of the Swedish Academy, served for
three years as its secretary, and published eighteen articles in its

Pmrppdmoc In 1776 he was ranked as number four in the Academ Call

Linnaeus, the botanist who set up the basic principles for classifying ani-
mals and plants into families and genera, was ahead of him in second
place. So when Faggort declared that Strdhle’s method was inaccurate,
that was that; for example, F. W. Marpurg’s Treatise on musical tempera-
ment of 1776 lists Faggot’s conclusion without describing Strihle’s
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Figure 7. Faggot's fretful fiasco: the angie PRQ is not 40°14'.
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method. It was not until 1957 that J. M. Barbour of Michigan State
University discovered that Faggot had made a mistake.

Faggot began by finding the base angle OQR of the main triangle: it
s 75°31'. From this he could find the length RP and the angle PRQ. Each

[

e elennn ancleq farmead ar the tan nf the main triangele hy t
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from the base could also be calculated without difficulty: it was then
simple enough to find the lengths cut off along the line RPM.
However (see Figure 7) Faggot had computed the angle PRQ as
since [the angle] PRQ was used in the solution of each of the other
triangles, and exerted its baleful influence impartially upon them all’.

The maximum error reduces from 1.7 to 0.15%, which is nprfprrlv

acceptable. Thus far the story puts mathematicians, if not mathemat-
ics itself, in a bad light: if only Faggot had bothered to measure the
angle PRQ.

But Barbour went further, asking why Strihle’s method is so accur-
ate. He found a beautiful illustration of the ability of mathematics to

._.
o
e
=t
v
-t

[

e reasons behind apparent coincidences. There is no suoges-

=J
tion that Strihle himself adopted a similar line of reasoning: as far as
anyone knows his method was based upon the intuition of the crafts-
man, rather than any specific mathematical principles.

The spacing of the nth fret along the line MPR can be represented on
a graph (see Figure 8). We take the x-axis of the graph to be the line QR

in Fioure 6. with Q at the origin and R at 1. We move MPR so that it

S-ic 0, witll sl Qg |l 4 IROVE VAN 50 LUiab

forms the y-axis of the graph, with M at the origin, Pat 1, and R at 2. The
successive frets are placed along the y-axis at the points 1, r, 7, ..., !, '?
= 2. (Note that this differs from the ratios 1/r, 1/7%, ... mentioned above,

because we are working from the opposite end of the string.)

M t——t—v———t—0-0—00-0—¢
Q R

Figure 8. Graph representing Strihle’s
construction as a function.
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A mathematician would call Strihle’s construction a projection with
centre O from a set of equally spaced points along QR to the desired
points along MPR. It can be shown that such a projection always has the
algebraic form

y={(ax+b)/ (cx+d),

where g, b, ¢, d are constants: this is called a fractional linear function.

a’c rmathad vhn ke that tha ~anetantecara 71— 10 b — 24
AUL Julailuac o 111\.L11Uu, ]Uu Lall Lilivwn Lllal uUlv vuidppualivv alov v lU’ 123 h“"’
c=—7 d=24 sothe prnjprﬁnn takes a givpn pninr xon QR to the pninr
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y=(10x + 24) / (—7x + 24)

on MPR. I'll call this formula Strihle’s function. Strihle didn’t derive it:
it’s just an algebraic version of his geometrical construction. However,
it is the key to the problem.

If the construction were exact, we would have y = 2*. Then the thir-
teen equally spaced points x =n/12 on QR, where n=0, 1, 2,..., 12,
would be transformed to the points 2*12 = (21" = ¢ on MPR, as
desired for exact equal temperament. But it’s not exact, even though
Barbour’s calculations show that it’s very accurate. Why? The clue is to
tind the best possible approximation to 2*, valid in the range 0 =x =1,
and of the form (ax + b) / (cx + d).

One way to do this is to require the two expressions to agree when x =

Tianies O Thae ~ixn thann omeeza 3~

b/ld=1; Ga+b)/Ge+d)=2"% @+b)/(c+d=2

Figure 9. To find the best fractional1 linear
approximation, fit it to the points x =0, ; and 1.
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At first sight we seem to need one more equation to find four
unknowns, but really we only need the ratios b/a, c/a, and d/a, so three
equations are enough. We may fix the value of d to be anything non-
zero, and we dec1de to set d = J2. Then the first equatxon implies that

runctlon takes the torm
(2= 2)x+ 2
1—V2)x+ 12

That doesn’t look much like Strihle’s function, but now comes a
final bit of nifty footwork. Barbour estimated the error in terms of the
approximation 3; to y2, and derived Strihle’s formula that way; Isaac
Schoenberg did the same in 1982. If you just substitute 3; for y2 in the
above formula, then you get

(A~ L QN /

\ /— 17~ L O
(24X 7 J0j 7/ (T 1/

™ 58),

which is different from Striahle’s function.
Nevertheless, the most natural thing to do is change |2 to some
approximation—but not 3;. Here’s how. There is a sequence of rational

ot it 1
L i

Q tn
15 U

es J2. One way to ge
equation p/q = /2 and square it to get p* = 2¢q*. Because |2 is irrational,
you can'’t find integers p and q that satisfy this equation (or, more accu-
rately, because you can’t find integers p and q that satisfy this equation,
y2 must be irrational) But you can come close by looking for integers

p and q such that p? is close to 2¢°. The best approximations are those

far whirh the arear ic ermallact that ic cnlhitinme nF the ant1atinm w2 —
AW VVIILILIL LIIC C11UL 1D J11Aalivdy vilatc 15, DUILULIULLY UL LG L\.ludLlUll
3
2¢* * 1. For example, 3> =2.2* + 1, and ; = 1.5 is moderately close to
7

y2. The next case is 7* = 2.5 — 1, leading to 5 = 1.4, which is closer.
Next comes 17 = 2.12* + 1, yielding the approximation 5 = 1.4166.. ..,
closer still. You can go on forever: to see how, consider the continued
fraction for 2. Start with the identity

1
1+142

2=1+

[y

1

1+1+

1+v2 1+12
Repeating the process, we see that 2 =[1;2,2, 2, 2,...].
If we truncate the continued fraction at some finite position, we get
a rational approximation to 2. The theory of continued fractions tells

i+ thin smatior ha thn oot v ~oacl 3~ am 3 2
Us tnat tnis must oc tne oest puUssiv
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given size of denominator), and not surprisingly we get a rational j
with p* = 2¢* = 1. For example,

- e, - o

51=3 1.5 21=7 t1.5 9 31 =1 1.5 5 5 y1—=341
LI;LJ—Ev I_l’Z': Z'J_57 LI’L’ Z‘; Z’J'_llr I_lyz‘y L, Z’; LJ_Z‘)y
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,...(n copies)..., 2] = p,/q,
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1 1 2qn—1+pn—l
/g.=1+ ———— =1+ = :
Pn!Gn 1+[2,....2] 14 pooi/Quer durF Paa

Comparing numerators and denominators, we obtain a pair of recur-

rence relations

ATIALT ITiauiLiis

For example, from p; = 17, q; = 12 we generate

—_ 2.1 L 1 e 4 S =12 1 17 — Ao
Pa— 41471 1/ = 41, 4 — L4 T 17 — &Y.
VP NN DRI I NN URPU NN [DRGRS AN SN, S
L OINUINuing Lnis process we get d Ldolc O dpproxindiions
n 1 2 3 4 5 6 7 8 9 10

pn 3 7 17 41 99 239 577 1393 3363 8119
qn 2 5 12 29 70 169 408 985 2378 5741

Here, each successive g, is the sum of the two numbers in the previous
column; each p, is twice the lower number plus the upper number in
the previous column. So we have a quick and efficient way to generate
rational approximations to y2, and incidentally we have proved that the
Diophantine equation p*> = 2q”> = 1 has infinitely many integer solu-
tions. Pursuing these ideas leads to a beautiful theory of the so-called
Pell equation p* = kq” * 1. In fact, it was Lord William Brouncker, and
not John Pell, who developed the theory: the ideas were erroneously
attributed to Pell by Leonhard Euler.

At any rate, we now have lots of approximations to 2, among them
being 1z. Now back to Strihle’s equation:

A |

[\%)

—_ 2 Ly
Vo Ty

x+V2°

—
[ 38
®

Y= 1—2

~~

Divide the numerator and denominator by 2 and rewrite it as the equiv-
alent formula:

x+1—-x/V2

L+ (1—-x/Vz2




Then replace 2 by the approximation 2 so that 1/ y2 becomes = this
gives

This simplifies to give

10x + 24
—7x + 24’

which is precisely Strahle’s formula!
So Strahle’s construction is very accurate because it effectively com-

bines two good approximations:
the best fractional linear approximation to 2* is

2—V2)x+12

Q—2)x+V2’
and Strihle’s function is then obtained from this formula by replacing
J2 by the excellent approximation 3.

.003 +
/\
.002 +
.001 Strihle
Equitempered
R e —
~.001 4 Mersenne /
-é -.002
)
= 003
S
~.004 $
™)
G
-.005 &
&
K
—.006 - 3>
< 5
-.007 4 paggo(":e
Figure 10.  Errors in various constructions: 008 - Th—
the size of the error is measured by taking -
the logarithm of the ratio of the approximate .
value to the true value. C ¢ DE E F F G G A B B C

The errors corresponding to the various approximations discussed
above are compared in Figure 10: the biggest errors are Faggot’s.
Thanks to the mathematico-historical detective work of Barbour, we
now know not only that Stridhle’s method is extremely accurate. We
also have a very good idea of why it’s so accurate: it’s related to basic
ideas in approximation theory and in number theory.

This leaves just one question unanswered—and, barring a miracle
or time travel, unanswerable. How on earth did Strihle think of his

o

construction to begin with?
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CHAPTER 5

Helmholtz: combinational tones

The keyboard of Bosanquet's enharmonic
harmonium, constructed around 1876, with
53 divisions to each octave. Its operation and
use are described in detail by Helmholtz in
his pioneering book On the sensations of tone.

David Fowler

Not until the 19th century were scientists able to draw together evidence and
techniques from acoustics, physiology, physics, technology, psychology,
anatomy, and mathematics in order to begin to answer long-standing
questions about musical phenomena. Two such questions to which

cesaa maass aznas TToT .]. ~lem 1 LY AT -~ PP r PO IS S PP |
LIETMAnmn von ri1€iminouz ( 7"‘} (14241 C o ".uJU CONirioulion CONCeErnea
combinational tones ( where two tones sounding together produce a third and
more) and the age-old fundamental Pythagorean insight into consonance.

A question that has teased the minds of musicians and listeners ever
since Greek times is: why is there an association between musical
sounds and simple whole number ratios? What explanation can there
be for the Pythagorean insight that consonances seem to relate to small
whole numbers and their ratios? Plato in the fourth century Bc wrote of
the need to ‘investigate which numbers are concordant and which are
not, and why each are so’. Despite the attention of some very distin-
guished mathematicians and musicians down the centuries—including
Kepler, Galileo, Stevin, Bacon, Descartes, Gassendi, Mersenne, Euler,
Tartini, d’Alembert, and others—this question did not receive a satis-
factory answer for more than two thousand years when a plausible

Hermann von Helmbholtz. This chapter is devoted to explaining some
of his ideas in this area.

Helmholtz’s book On the sensations of tone as a physiological basis for the
theory of music, first published in 1863, must surely be the single most
comprehensxve sustained and profound contribution to musical

translation by Alexander Elhs, who added to it many notes and appen-
dices of his own. The second edition of this translation (1885) gives a
panoramic view of the subject in the heyday of the mahogany, brass, and
glass era; one can scarcely imagine what advances Helmholtz, Ellis, and
their contemporaries might have been capable of had they had access to
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Music and mathematics

Two of the many topics Helmholtz treats will convey the sweep and
power of his approach. We begin with a phenomenon first described in
the eighteenth century.

78

Combinational tones

Combinational tones are additional notes that you can sometimes hear

when two other notes are played together. The question is, why and

better, Helmholtz carried out experiments with sound generators.

The main sound generators of Helmholtz’s time—that is, instru-
ments to produce tones for acoustical research, rather than for musical
listening—were tuning forks (for notes of fixed pitch), harmoniums
(or, more accurately, reed organs), and the siren (convenient for
producing sounds of different pitch). Reed organs were used mainly for
demonstrations: Helmholtz’s translator A. J. Ellis designed one for the
purpose, calling it a ‘Harmonical’, of which there is a surviving example
at the Bate Collection in Oxford—it looks just like what it is, a small
harmonium—and Helmholtz’s book includes a description of the
operation and use of Bosanquet’s enharmonic harmonium.

Helmbholtz’s illustration of a double siren is annotated: ‘constructed
by the mechanician Sauerwald in Berlin’. (Helmholtz was always
scrupulous in giving credit to the instrument workers whose skills
made his work possible, and also to King Maximilian of Bavaria and
other patrons who gave the money for particularly elaborate pieces of
apparatus.) There is a careful description of it in his book; there are two
sirens mounted on the same shaft, which can produce two tones of
variable pitch but fixed relationship, such as unison, octave, fifth, etc.
The cylinder of the top can be rotated independently by a handle; with
this, one can investigate beats (by rotating the handle at a constant
speed), or demonstrate that the ear cannot detect phase shift (by fixing

the handle at different settings). We are no longer used to thinking of
sirens as scientific instruments, but some stﬂl exist as public fire alarms

where they are usually double. Next time you hear one, listen carefully:
along with the two or more loud tones of the siren itself, you will
clearly hear a lower tone, and you may also hear a higher tone. These
are combinational tones. Let Helmholtz explain them in his own words
(note the opening phrase: ‘these tones are heard’):

These tones are heard whenever two musical tones of different pitches are
sounded together, loudly and continuously...Combinational tones [also
known as terzi suoni, grave harmonics, resultant tones, subjective tones, inter-
modulation tones, aural harmonics, and heterodyne components!] are of two
kinds. The first class, discovered by Sorge [a German organist, in 1745] and
g §Z P S Felic Tealimee ctnliiioe 2o 17047 §F hacn tnweand flavoietsal #asane bonmmzaon
ldllllll Llllc 1taan VIUILLLISL, lll L7234, 1 11dVC LCLITICU uwCIC’lLlul LUTLC. DCLdAUNC

their pitch number [frequency] is the difference of the pitch numbers of the gen-
erating tones. The second class of summational fones, having their pitch number



Helmholtz’s illustration of a double siren.

CHAPTER 5 | Helmholtz: combinational tones and consonance

equal to the sum of the pitch numbers of the generating tones, were discovered
by myself.

The technique for detecting and analysing tones are twofold: either
to detect the vibration which produces them, or to pick out the fre-
quency under investigation using tuned resonators. In the first method,
Helmbholtz might attach a bristle to a tuning fork and draw it across a
smoky glass plate; we might photograph the motion of particles, or use
optical interferometry, or display the output of a microphone on an
oscilloscope. Preyer’s tuning forks are an example of tuned resonators;
Helmholtz devised a range of glass resonators through which the
experimenter would listen. The first method tells us little beyond gross
information—it is notorious that the wave-form gives little information
about the sound of things—and the ultimare resonator thar we must
often fall back on to investigate the nature of sound is our own ear. One
fascination of musical acoustics is this attempt to extract some objectivity
about this essentially subjective phenomenon.
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Helmbholtz’s first interest was physics but, because state aid existed
for medical students and his family was of modest means, he trained as
a doctor and then started medical practice in the army. However his
interest was always more in research and, while a student and in prac-

Johannes Miiller and his students and absorbed

tice, he worked witl

their philosophy of founding physiology on physical and chemical
processes, rejecting ideas of non-physical ‘vital forces’. Significantly,
Helmbholtz's first major paper, in 1847, which arose from his study of
] . ¢ les. i taced the idea-of ] 1

one of the several simultaneous announcements of the principle of
conservation of energy. He was the first to measure the speed of nerve
impulses and his result, that it was around 30 metres per second in
frogs’ nerves, caused great surprise by being so slow. He invented the
ophthalmoscope in 1850, and laid down our understanding of the eye
in his three-volume Handbuch der physiologischen Optik (1856-67). His
book On the sensations of tone does the same for the ear.

He was among the first to give detailed physiological descriptions of
some aspects of the fine structure of the ear, which he summarizes over
thirteen pages of his book in a passage that begins: “The construction
of the ear may be briefly described as foliows...". The mechanism is
exquisitely delicate: the eardrum or tympanum is linked by three small
bones (collectively called the ossicles—individually, the hammer,
attached to the drumskin, the anvil, and the stirrup) to the inner ear,
which is filled with fluid and contains both the balancing mechanism of
the semicircular canals and the auditory mechanism of the snail-like
cochlea, containing the neural mechanism for detecting and analysing
the sound and transmitting the resulting nerve impulses on to the brain.

Helmbholtz gives a detailed analysis of all aspects of the ear including,
in the spirit of Miiller’s approach, its mechanical characteristics. For

example:

The mechanical problem which the apparatus within the drum of the ear had
to solve, was to transform a motion of great amplitude and little force, such as
impinges on the drumskin, into a motion of small amplitude and great force,
such as had to be communicated to the fluid in the labyrinth.
A problem of this sort can be solved by various kinds of mechanical apparatus,
such as levers, trains of pulleys, cranes, and the like. The mode in which
it is solved by the apparatus in the drum of the ear, is quite unusual, and very
peculiar.
One of the peculiarities that Helmholiz described is its asymmetry: the
drumskin (or tympanic membrane) is curved inwards, and hammer and
anvil are not fixed together but have interlocking teeth that allow a
ratchet-like behaviour.

Back, now, to combinational tones. Helmholtz gave a general

description of his explanation in the text, but reserved the details to a

et N . : ~ e N P ol L R R SR L,
short appendix. The first-order theory of vibration and hearing is linear,
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as exemplified by Ohm’s law of perception:

-]

he human ear perceives pendular vibrations [simple harmonic motions] alone

c climminla ema o o A T 1 b X P Tt cmitieC
a5 SIITPpIE LOTIES, dIid Iesulves dil ouner pCrl()dlC motoIns Uf e 4dir I1ito d Series

¢ nendular vibrations. hearine the series of simnl hicl ,

with these simple vibrations.

This corresponds to the approximation of assuming that all vibrations
are infinitesimaily small and periodic mortion can be resolved into its
» b 2

small, they are in no sense infinitesimal. Although Helmholtz does not
actually use these words, for they were not then fashionable, his
explanation is that combinational tones are the ear’s non-linear response
to these vibrations of finite amplitude. He concludes the short mathe-
matical appendix that gives the detailed argument (in the form of the

solution of a differential equation) with these words:

If, then, we assume that in the vibrations of the tympanic membrane and its
appendages, the square of the displacements has an effect on the vibrations, the
preceding mechanical developments give a complete explanation of the origin
of combinational tones. Thus the present new theory explains the origin of the
tones (n + m) as well as of the tones (n — m), and shows us, why when the
intensities a and b of the generating tones increases, the intensity of the com-
binational tones, which is proportional to ab, increases in a more rapid ratio. ..
Now, among the vibrating parts of the human ear, the drumskin is especially
distinguished by its want of symmetry, because it is forcibly bent inwards to a
considerable extent by the handle of the hammer, and I venture therefore to
conjecture that this peculiar form of the tympanic membrane conditions the
generation of combinational tones.

Since Helmholtz’s time, much delicate work has been done on the
fine structure of the ear, but I do not know how the detail of this final
hypothesis has stood the test of time. The following quotation from
J. E Bell, a leading experimenter in the field of non-linear elastic
phenomena, indicates that the topic may still be far from resolved:

History abounds with unwarranted rejection of valid experiments. Only in
hindsight do we learn that a good nonlinear ear is required to hear Hermann
Helmbholtz’ summarion tones in musical acoustics, an acoustical property uni-
versal among musicians but obviously not a common characteristic of the ears
of many, but fortunately not all, physicists since the 1850s. [Bell's footnote:
Aural harmonics are a subjective measure of the phenomenon of summation
and difference tones. As a small sample of the difference of opinion among
physicists, I quote titles from the ‘Letters to the Editor’ section of a single issue
in June 1957 of The Journal of the Acoustical Society of America: Aural Harmonics
are Fictitious’; ‘On the Inadequacy of the Method of Beats as a Measure of
Aural Harmonics’; ‘In Support of an ‘Inadequate’ Method for Detecting
‘Fictitious” Aural Harmonics’.] Only in hindsight, too, do we learn that patience
and knowledge, ignored by his numerous contemporary discreditors, were
required to reproduce Léon Foucault’s pendulum experiment in the
mid-nineteenth century.
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A photograph of Hermann von Helmholtz taken for Lord Kelvin by Mr Henderson, a student, on 7 July 1894, a few days before
Helmholtz's final illness.
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At this point, Bell has another footnote:

Foucault presented the results of his experiment to the French Academy on
February 3, 1851 and demonstrated the experiment to the general public in the
Foucault’s experiment which demonstrated the rotation of the earth aroused
his contemporaries to publish over 60 papers during that same year. There
were debates among the theorists who adopted opposing analytical approaches.
There was discord among the experimentists, some of whom, not appreciating

obtained conflicting results. Thus was generated the heated controversy that

dominated the remaining 17 years of Foucault’s life of only 47 years.

Two comments conclude this section. First, in this model,
Helmboltz inferred that the ear generates its own harmonics. So har-
monics are all around us, in the physics of most musical instruments, in
the mathematics of the analysis of periodic motion, and in the acoustics
of our perception of tone. This underlines the second-order violation of
Ohm’s law of perception: the ear perceives more than the frequencies
that objectively are presented to it. Second, there is a simple and
obvious explanation of the difference tone that was advanced by
Lagrange, Thomas Young, and many others, and was still a live issue
at the time of Ellis’ translation, that as the beating of two almost
coincident pure tones increases in
the beating sensation would move into the perception of the difference
tone (hence the name ‘beat tone’ often given to the difference tone).
Experiments have been done, with ambiguous results, to see if a
beat-like phenomenon can give rise to the perception of a tone, but the
most convincing smgle argument agamst this proposal—at least to
1 and

P
ncy Coulil

1
tones cannot be

O

o
easily explained. The matter of beating also enters
our second topic.

The problem of consonance

One of the oldest problems of science is to explain the Pythagorean
association of consonance with small integer ratios. As we saw in
Chapter 1, when we sound a unison 1:1, an octave 2:1, a twelfth 3:1,
a double octave 4:1, afifth3:2,ora fourth 4:3, we get a blended har-

Such a repertoire of harmonious sounds has been at the basis of the
Western and some other musical traditions, as far as we can trace back
in time. So just what is consonance, and just why are these particular
intervals perceived as consonant?
Plato included music alongside mathematics and astronomy n the
1- 1.
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Republic, Book VII, explaining the parallel as follows:

It appears that just as the eyes are fixed on astronomy, so the ears are fixed on
harmonic motion, and these two sciences are one another’s sisters, as the
Pythagoreans say and we agree...[But we must] rise to problems, to investig-

ate which numbers are concordant and which are not, and why each are so.

There is also a Greek treatise (attributed to Euclid) on the division of the
scale, the Sectio canonis, whose obscure introductory essay concludes:

Among [pairs of ] notes we also recognize some as concordant, others as

ordant, oncordant making a single blend our o € two, Whic €
discordant do not. In view of this, it is to be expected that the concordant notes,
since they make a single blend of sound out of the two, are among those numbers
which are spoken of under a single name in relation to one another, being either
multiple [of the form n: 1] or epimoric [of the form (n + 1):n].

This abstract principle—if concordant, then multiple or epimoric—
seems to have mediated the Pythagorean approach to music, for they

do not seem to regard the eleventh, the octave plus fourth with ratio
8: 3, as concordant, to the derision of those Greek music theorists who
had a closer eye on practice. Here, for example, is what Aristoxenes
writes, in the Elementa harmonica II:
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makes the magnitude resulting from them co ncordant.

The problem of explaining consonance was a live issue until com-
paratively recent times: Kepler, Galileo, Stevin, Bacon, Descartes,
Gassendi, Mersenne, Rameau, Euler, Tartini, d’Alembert, and others all
gave explanations of the phenomenon (although not all of them
published their thoughts), and many of them regarded themselves as
providing the first really satisfactory explanation. For example, Kepler
wrote in his Harmonices mundi of 1619:

After two thousand years [during which the causes of the intervals] had been

sought for, I am the tirst, if [ am not mistaken, to present them with the great-
est precision.

and Galileo wrote, in his Two new sciences of 1638:

I stood a long time in Doubt concerning the Forms of Consonance, not think-
ing the Reasons commonly brought by the learned Authors, who have hitherto
wrote of Musick, sufficiently demonstrative ... We may perhaps be able to
assign a just reason whence if it comes to pass, that of Sounds differing in Tone,
some Pairs are heard with great Delight, others with less; and that others are
very offensive to the ear.

holtz’s

By general consent, Helm

s explanation, more than two centuries
later, is much ahead of the rest, bestriding as it does all aspects of the
problem: instrumental, acoustical, physiological, psychological, and
mathematical.

What features should a satisfactory explanation of consonance possess?

e It should centre on some characteristic that we can recognize,
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CHAPTER 5 | Helmholtz: combinational tones and consonance

canonis, described in the words ‘consonance is a continuous, disso-
nance is an intermittent sensation of tone’.

e It should be broad enough to admit some change over time, to

or to explain why the fourth 4: 3, a classically consonant interval,

may not seem as consonant as the third 5: 4, or even the sixth 5: 3.

e It must be broad enough to admit that most of the so-called

, s , , . ifth

used in almost everything except unaccompanied choral singing, is
not 3:1 but 27/12: 1 (that is 1.4983 ... : 1), while the major third is
worse: if the instruments and players are indeed playing in properly
tuned equal temperament, the third is not 5 : 1, but 2'/%:1
(=1.2599...:1). We do not hear nice ratios but musical notes!

e On the other hand, it should explain how some intervals, such as
the unison and octave, can stand no tempering, while other inter-
vals are much more tolerant.

Ultimately, it should be able to explain the ambiguity of intervals: that

a grossly mistuned major sixth may in some circumstances be recog-
nized as a widened major sixth, and in others as an arrowed minor
seventh, but never as both simultaneously; or an interval of six semi-
tones (a tritone) may be parsed in one context as a diminished fifth,
and in another as an augmented fourth.

It must also be broad enough to explain how some intervals such
as the major third sound more consonant in the treble than in the
bass. Or, in a celebrated prediction of Helmholtz, that a major third
D-F* played by a clarinet and oboe sounds much better when the
clarinet takes the lower note than when the oboe does, while a

fourth or minor third will sound better when the oboe takes the

lower note.

Having put together such a formidable list of desiderata, let us
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instruments involved are significant so let us fix, for example, on two
violins. (This choice is especially favourable, as we can play notes of
every pitch with a violin, so chords of any interval with two of them.)
We know that the violin’s quality of tone is produced by its own par-
ticular mix of fundamental and overtones, so we do a harmonic analysis
to determine what precisely this mix is.

The listener is crucial, so we do an experiment therc also. This time
we use pure tones—and, in this precis of the description (but not in
Helmholtz’s book!), we ignore the complications of the combinational
tones and other non-linear responses of the ear. We, the subject, hear
two tones that start in unison; as one of them increases in pitch, we

LU | R DU I Y
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Music and mathematics

until it reaches its peak of unpleasantness at around 30 beats per sec-
ond. After this stage the quality of unpleasantness—roughness is the
word used by Helmholtz—decreases away to zero. So we have some
sort of ‘unpleasantness curve’ such as this:
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Helmholtz took the simplest such kind of expression, which he
admitted was an arbitrary choice, but

it at least serves to shew that the theoretical view we have proposed is really
capable of explaining such a distribution of dissonances and consonances as
actually occurs in nature.

Take, then, two violins playing any chord, and, using the harmonic
analysis of the violin’s tone and this roughness curve, add up the contri-
butions of each constituent of the two notes: this gives a total measure
of the roughness of the interval. Better, says Helmholtz, ‘knowing that
diagrams teach more at a glance than the most complicated descrip-
tions’, to draw all this out as a graph. His figure appears opposite, split
into two halves, with a further scale added. (It is not clear what technol-
ogy he used to produce his graph, but it is difficult to read and interpret
in his book—in particular, it was printed in white on black; our version
has been greatly cleaned-up and enhanced.) One violin plays middle C,
while the other violin plays any note in the two octaves above.

Look at the left-hand end of the top graph, around the point middle C.
The lowest curve gives the roughness of the two fundamentals,
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successively 2:2,3:3, 4:4,and 5: 5, their magnitudes being determined
by the harmonics analysis of the violin’s tone. As the interval widens,
contributions from the ninth harmonics of the lower note and the
eighth of the higher note enter, then of the eighth and seventh, while
the contributions of the harmonics of the unison fade away into
insigrificance, and so on. The sum of all of th ntribution
top-most curve, the total roughness curve. The minima of this total
roughness curve then give the points of relative local consonance: we
find steep valleys at the most perfect points of consonance, especially
the unison, the octave (where the two graphs join), and the twelfth

(on the lower half) and less well-defined minima at the 1mperfect
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1:1 6:5 5:4 4:3 32 5:3 7:4 2:1
Unison minor major fourth fifth major  harmonic octave
thirds sixth  seventh
4:8
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4:3
2 5 l 7.2 \[7:2 1:4
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2:1 12:5 5:2 8:3 3:1 1:3 7:2 4:1
octave major minor  eleventh twelfth major  harmonic double
thirteenth fourteenth octave

lower the trough, the greater the degree of consonance. His diagram is
not definitive: it clearly required an immense amount of labour to
calculate this example by hand, and it can be refined. (For an obvious
example the unison involves only contrlbutlons up to the fifth

o

valley at the unison should be steeper; translated into musical terms,
this means that its tuning is even more critical.)
Such was Helmholtz’s explanation. With rather more justification

than some of his predecessors in the long tradition, he says:

I do not hesitate to assert that the preceding investigations, founded on a more
amra b azmaliradie A ol £ oo A_J 2t e gmarealos P 54 P B
cxdll dlldlyblb Of th 1 LOLIC, dl11u UPUIJ Pu151y

from esthetic principles, exhibit the true and sufficient cause of consonance and
dissonance in music.

e sensations o scien iric, as distinct
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Concluding remarks

Two things cannot but strike the mathematically alert twenty-first-

century reader in this backward look to the nineteenth century. Two

analysis (with the possibility therein of chaotic behaviour) and catastrophe
theory. Helmholtz’s passionate belief was that the non-linear contribution,

the second and higher order effects, are essential to an understanding of
musical acoustics, and his minimum-seeking approach to consonance is

88

the exploitation of a pure catastrophe-theoretic technique. And while
Helmbholtz’s book is a delight for those who like their science broad and
deep, embracing physiology, physics, and mathematics, we have not
begun to explore his appreciation of the stuff of sound, music itself.
Finally, the reader will find there gems of other diverse sorts; for exam-
ple, the elaborate connection between the non-conformist church,
tonic sol-fa, music publishing, and the nineteenth-century attempt to
construct keyboard instruments that could play in just intonation, or at
least better approximations to it than that provided by the crude tem-
pered diatonic scale. Read this for yourself!
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Mathematical structure in music
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CHAPTER 6

The geometry of music

Wilfrid Hodges

An example of a musical palindrome: the
minuet from Joseph Haydn's Piano sonata
No. 41, Hob. xvi/26.

The dimensions of time and pitch make music into a two-dimensional space.
Geometers study a space by describing its possible transformations, and they
study a pattern in space by asking what tmnsformations leave the pattern

unchanged—that is, what symmetries the vattern has, We nnnlu these ideas

(2> 44 v ooy Telar SHTLIRLLTILS WAL Pl £ern nas. Py vistol

to musical space. For example, when does it make musical sense to squeeze a
tune, or to turn it upside down? Since musicians cannot use very high or low
pitches, a piece of music is like a frieze; we can find musical example of all
the possible symmetries of a frieze pattern.

In memory of Graham Weetman (1963-92), mathematician and musician.

While Edward Elgar was writing his Enigma Variations, he went
walk along the banks of the River Wye with his friend G. R. Sinclair.
Sinclair brought his bulldog Dan, who fell in the river and barked as he
climbed ourt again. Sinclair turned to Elgar and said “Set that to music’.
So Elgar did, in the variation named G.R.S. after Sinclair. Elgar’s manu-

script marks ‘Dan’ at the point where Dan barks, though the printed

editions rather pru 1dis v leave it out.

for a

Here is the score of the crucial moment:

Allegro di molto

—_—
T[T

-

Edward Elgar, Enigma variations XI ‘G.R.S.’



Music and mathematics

You can clearly see the lines slanting down from top-left towards bot-
tom-right. Since the music runs from left to right, these lines represent
the music falling, and indeed you can hear it falling if you listen to a per-
formance. Elgar makes the music fall because the dog fell. But these are

Johann Jakob Froberger, Suite XII in C major,
Lamento sopra la dolorosa perdita della Real Msta
di Ferdinando IV, Ré de Romani.
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nire different kinds of fallin In the mugical score hich-nitched
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notes (notes of short wavelength) appear near the top, and low-pitched

notes (notes of long wavelength) are near the bottom. So a fall in the

score indicates that the orchestra moves from short wavelengths to long
: , . idly

or three metres closer to the centre of the earth.
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Here is an example of the opposite phenomenon: music that rises to
describe something going up. It comes at the end of Froberger’s mus-
ical depiction of the death of Emperor Ferdinand IV. The picture shows
Froberger’s manuscript, and you can see Froberger’s picture of the

clouds of heaven welcoming the soul of the emperor as it climbs up

a
scale of three octaves.

The two examples above illustrate the difference between up or
down in space and up or down in musical pitch. In fact there are not two
but three different kinds of space to be correlated. First, there is phys-
ical space. It has four dimensions—three of space and one of time.
Second, there is the score. To a first approximation, the score is a plane
surface with a horizontal dimension and a vertical dimension. By con-
vention the horizontal dimension represents time, from the past on the
left to the future on the right. Also by convention the vertical dimension
represents pitch; notes of shorter wavelength are written higher up.
Third, there is musical space. This space has any number of dimensions,
depending on how we choose to analyse it. The two most obvious
dimensions are time and pitch, and these are the two that we represent
as dimensions in the score. Probably the best candidate for a third
dimension is loudness. But the human ear is very bad at comparing the
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loudness of different sounds, and even worse at remembering degrees
of loudness. Most music doesn’t distinguish more than five or six
degrees of loudness.

Taken literally, time in music just is physical time; some musical

oJ es
T[" tris fempiternus/ |
T/ pa/ fi\
S £/ es i\
T P Tu tris fempiternus/ \  us,
TY pa/ fi\
TY / li\
) 9 Tu us.

Sic

Late ninth-century notation, copies in print
by Gerbert, Scriptores ecclesiastici de musica,
1784.

usual physical sense. It’s pure convention that time is represented in the
score by movement from left to right. The same convention makes
physicists put time on the x-axis, moving forwards from left to right.

S icated g o fvtonstd

high-pitched notes are ‘high’ and low-pitched ones are ‘low’. That’s how
we are able to understand the music of Elgar and Froberger quoted

a shock to learn that in classical Greece hmrh-

above. So it comes as a shock
pitched notes weren’t heard as ‘high’. In fact the highest-pitched note of
the classical Greek octave was called nete, the ‘nether’ or lowest note. It
got this name from the fact that the stringed instrument called a kithara
was held with the highest-pitched string nearest the ground—just how
one holds a guitar today. The classical Greek expression for high-pitched

notes was oxys thrh whence our musical harne mdqv the Greek for

low-pitched was barys ‘heavy’. Classxcal Greek musicians represented
pitches by letters, not by position on a musical page.

Very likely the correlation between short wavelength and height on
the musical page was set up before anybody connected either of them
with physical height. The correlation was made in western Europe,

nrnhnhlv dnrma the nprmd 850-1150 AD. Two manuscripts of the late
ninth century use a system of labelled boxes for the pltches, and they
both put the boxes for higher pitches nearer the top of the page. This
clumsy system never caught on. But during the next few centuries a
notation developed for showing where the music rises and falls, and the

notation formed a strong tendency to show rises in pitch by shapes like
/, and falls in pitch by shapes like \. This led directly to the modern staff
notation, which started to emerge in the twelfth century.

Nobody knows just when high pitch came to be correlated with phys-
ical height, but the correlation seems to come from western Europe
again, and it became very strong during the fifteenth century. This is the
century in which the names altus or superius ‘high” and bassus ‘deep’ came
to be used for high-pitched and low-pitched voices—whence our altos
and basses. (Altos count as high because women weren'’t allowed to sing
in churches.) During this century there were still a few notation systems
that put lower-pitched sounds higher on the page—for example, some
Italian lute tablatures—but they disappeared at the beginning of the six-
teenth century, presumably because they had come to feel too unnatural.

Josquin Desprez put the seal on this development by sending Jesus
down from Mount Olympus in a descending scale of twelve notes.
This is still one of the longest descending motifs in all vocal music
(see overleaf).
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Josquin Desprez, Huc me sydereo (late 1490s).
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Up, down, between and distance

Josquin’s idea opened the floodgates to a torrent of musical representa-
tions of ups and downs, mostly in music from western Europe. We find

Michael Tippett, A child of our time, No. 26
Chorus.

Franz Schubert, song: Death and the maiden.
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them in Byrd, Purcell, Handel, Haydn, Wagner and Elgar.
An interesting example is a moving passage from the chorus The cold
deepens in Michael Tippett’s oratorio A child of our time. The first staff is
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While the soprano sings “The world descends’ and duly sinks down-
wards into the frozen ocean, the orchestral part surprises us by moving
upwards. Tnppett knows exactly what he is doing. Physical space has
more structure in it than just up and down. It also has distance, and as
distance changes in time we have moving apart and coming together.
We can carry these notions over to musical space. In fact, Tippett’s
piece conveys a strong feeling that as the sopranos descend and the bass

instruments of the orchestra rise to meet them, Qnmerhmo is getting

trapped b tween the two.
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Tippett was by no means the first composer to play this metaphor.
Schubert has a very similar device in his song setting of Claudius’ poem
Death and the maiden. In the first half of the song the maiden begs Death
to leave her alone (° Ruhre mich nicht an’). She sings energetically, but

Charles Ives, Duty.

Metrics: diatonic in C major; diatonic in F
major; chromatic.

Richard Wagner, Parsifal, second act.

tha ha 511 T str noth ic cinking Then ennd.

in r 7=} Q
wic vaos T Stiliigil 1S SULARAIIE. B AICil suldr

in ng

('D

denly the bass line turns upwards; not because her strength comes back,
but because Death is trapping her between the right hand and the left
hand of the pianist. From that point onwards, only Death sings.

VES S ifms 1T {MpOsSi . W
pitch distance to represent the fact that God is infinitely close to man.
But what is an infinitesimally close pitch distance? In the end Ives gave up

and left it to the singer to decide anhp what Ives wanted was a small-

L1220 SR 10 GLLIGT. wilal IVES Walllcl

est perceptible pitch difference. There is no standard notation for this.

So 'near is God to man

micic thare are twn main ancwere The firer ic that ni
MusiC there are two main answers. 1 ne rirst i1s tnat P

o be in a key, and we count one unit of distance for each step up the
scale of that key. This measure of distance is called the diatonic metric,
and it depends on the key. (‘Metric’ is the mathematicians’ name for a
scale of measurement.) The second answer is that for many instru-
ments with set pitches (such as pianos and organs) the smallest distance
between two playable notes is a semitone; so we count one unit of dis-
tance for each semitone. This is the chromatic metric. Thus from B to F
is 4 diatonic units in the scale of C major, 3 diatonic units in the scale of
F* major and 6 chromatic units:
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even a short distance from western classical music.

There is a natural dual to Ives’ question: How can we use musical
space to represent that two things are infinitely far apart? For some
reason, composers have generally wanted to do this more with time
than with pitch; the problem is to represent eternity within the confines

of a piece that lasts, say half an hour, There are several ways to doit. A
simple way is to make a note last not for ever but for a relatively long
time. Thus Wagner in Parsifal:

("You and I would be damned for eternity, for the sake of one hour.’)
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Joseph Haydn, Creation, chorus: The heavens are
telling.

Felix Klein (1849-1925)
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Here eternity lasts seven crotchets, compared with the two crotchets of
an hour, giving the rather unimpressive ratio of 3.5 hours to 1 eternity.
Haydn in The heavens are telling from his Creation puts two pauses on
‘ever’, daring Gabriel (the soprano voice) to make them last as long as
she can. (In the German version the pauses sit pointlessly on the word
‘keiner’; but the libretto for Creation was written first in English.)
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As we shall see below, other composers have used a subtler and more
geometric way of pointing to eternity.

What is space?

Until the middle of the nineteenth century there was very little for
mathematicians to say about musical space. This was because mathe-
maticians had a shallow view of space itself; they thought of it as built
up from points, lines, planes, and so forth. There is not much to be said
about musical points and lines.

But the second half of the 19th century, particularly the work of Felix
Klein, brought a new view of what space is. Instead of asking what
space is made of, we ask what are the significant transformations of space.
Roughly speaking, a transformation of space is a rearrangement of
space and the things in it, that can be written by a simple mathemartical
formula.

Our musical space has just the two dimensions of pitch and time, so
it forms a two-dimensional space—in fact, a plane. The figures below
illustrate four kinds of transformation of a plane. The light horn is a set
of points of the plane; the transformation moves the plane so that those
points finish up forming the dark horn. The transformed version of a
set of points in the plane is called the image of the set; so the dark horn
is the image of the light one.

e A translation is a transformation T that moves all points of the plane
in the same direction and through the same distance. (If the
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distance is 0, then T is the identity transformation that leaves
everything exactly as it was.)

‘A!

Translation '

o A rotation is what the name suggests: it rotates the whole plane
through some angle strictly between 0° and 360° around some
fixed point. (In the illustration the fixed point is in the middle of
the circle made by the horn’s tubes, and the rotation is clockwise,
as shown by the arrow.)

N\
N
N

Rotation e

e A reflection is what you get if you put a two-sided mirror at right
angles to the plane and take each point to its reflection in the
mirror. The dashed line shows the mirror.

Reflection

o A glide reflection is the hardest to describe. This transformation
consists of a translation along a line (the dashed line of the
illustration), followed by a reflection in the same line.
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Glide reflection

Figure from M. Kugel, ‘Translation-Rotation’,
Die Reihe 7 (1965): the arrow indicates an
isometry between the two quadrilaterals,

o8

These four kinds of transformation have an important property: they
never change the distance berween any two points on the plane. (This
is sometimes expressed by saying that they move the plane ‘rigidly’.)
Transformations with this property are called isometries because they
don’t alter the scale of distances (the metric). There is a theorem of
geometry which tells us that every isometry of the plane has one of the
four types above.

We can apply these ideas to musical space as follows. At a first
approximation, a musical motif M consists of a set of notes performed
at certain pitches over certain time intervals; so it is a subset of musical
space. A symmetry of M is an isometry of musical space that takes M
back to M (although it may rearrange the points within M).

-
é' ‘ ‘{h' %
& e ‘_,'j" -

Since a piece of music lasts only a finite amounr of rime and uses
only a finite range of pitches, a musical motif M lies within a bounded
region of musical space; it has a start and a finish to left and right, and
highest and lowest notes above and below. It follows that no translation
(except the identity translation that keeps everything exactly where it
was) can possibly be a symmetry of M. For example, if the translation
moves points to the right, it will move the end of the motif to a point
of time after the original motif is finished. By the same argument, a
glide reflection can never be a symmetry of a musical motif. So only
two kinds of symmetry are left: reflections and rotations.

There is no law of mathematics or music to stop composers from
using any reflection or rotation they please as a symmetry of their
motifs. But in practice, apart from some examples that are too trivial or
too abstruse ro be interesting, the symmertries of musical motifs turn out
to be just two kinds of reflection and one kind of rotation, as follows:

reflection in a vertical line: call this transformation R,
reflection in a horizontal line: call this R,
rotation through 180° (exactly half a circle): call this R,
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These three kinds of symmetry are not independent; one can prove that
if two of them are symmetries of a motif M, then the third is a sym-
metry of M too. So we can classify motifs according to which symme-
tries they have, and there are five possibilities, which we shall call the

symmetry types of musical motifs. (The names p! etc. are adapted from
crystallography, where one studies the shapes of crystals by describing

their symmetries.)
p1: only the identity transformation is a symmetry;
besi . - - -
pv: besides the identity, only R, is a symmetry;
p2: besides the identity, only R, is a symmetry;
phv: all of R, R, and R, are symmetries.

For some broad guidance here are examples of letters which (at least
approximately) have the five symmetry types. We think of a letter as
being a set of points of the plane. For example the reflection R, is a sym-
metry of the letter A because the letter covers exactly the same set of
points of the plane if you flip it over around a vertical line passing
through the top of the A. On the other hand, if you turn A over around
a horizontal line, the result is not A but an upside down A, covering a

AL e — ._-‘
airerent set o [) I1ILS

C)

(pD) F G J
(ph) C E K
(pv) A M V
(p2) N S Z
(phv) H O X
The five symmetry types of motifs.
Motifs of the five symmetry types

Type p1: no symmetries

The overwhelming majority of musical motifs belong here. For most of
them, this is a fact of no particular significance. But suppose the com-
poser has a mind to use some geometrical transformations such as
reflections and rotations. Then an asymmetrical motif M gives much
the best value, because its images under the different transformations
are all different and distinguishable.

Given that most tunes are highly asymmetrical, what should we say
about a composer who takes somebody else’s tune, applies a transforma-
tion to it and then markets it as his own? This is exactly what
Rachmaninov did to a violin caprice of Paganini. Below we show the
Paganini original and the inverted Rachmaninov version in lock step.
Rachmaninov follows Paganini bar by bar, and it’s a chromatic inversion
(so that it changes minor to major). But he slightly changes the rhythm
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and at one point he jumps by an octave. (It’s a good exercise to play
Paganini’s tune upside down with no further alterations; one can see why
Rachmaninov made the changes that he did.) What the table doesn’t
show is the difference in mood between a single violin playing

(2]
>
"]
-
2
I

Upper line: Niccolo Paganini, 24 caprices for
violin solo, Op. 1, No. 24.

Lower line: Sergei Rachmaninov, Rhapsody on
a theme by Paganini, Op. 43, Variation XVIII.
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in the Classic FM Hall of Fame, where the British public votes for its
most popular classical pieces, the scores in the year 2000 were

Rachmaninov inverted version: 33rd out of 300.
Paganini original: nowhere.

Type ph: only reversal of pitch

If a simple melody with no accompaniment has type ph, then it consists
of a single note repeated. Surprisingly there are motifs with this property.
Anton Reicha, a friend of Haydn, published a piano fugue whose
subject consists of the same note repeated 34 times. (Towards the end
the left hand sees the challenge and manages to repeat a single note
86 times. Fans of the Fibonacci numbers will be interested to hear that
these 86 notes are grouped into blocks of 5 beats and 13 beats.)
Reicha’s fugue is more entertaining than musical. On the other hand
there certainly are worthwhile melodies that lie entirely in one pitch. But
then they must owe their interest to another dimension. It could be

U0 SRION, [NSSURURULOt I, DRI IUEPISIRNL. SR F
myuiunm, 48 wiill druimn mmusic, uou

h a good drum player usually varies



CHAPTER 6 | The geometry of music

the timbre as well. The didgeridoo plays only one note, but an expert per-
former can get a tremendous range of timbres from it. Much of the music
of the Italian composer Giacinto Scelsi revolves around changing the tim-

bres of a small number of notes, as in his Quattro pezzi su una nota sola.
IF tif af rvne nh haeg vera al v

Qe N1
motit of typLe pit dlas stvilal VUILLs U

voices can reflect the pitch movements of the lower ones and there is
no restriction to a constant pitch. When the upper and lower voices
move in opposite directions, this is known as contrary motion. It forms a

4 iclassical i . .
sometimes throws one’s arms out or brings one’s hands together. Some
composers do it naturally, as if they never even noticed:

Allegro
- 1 1
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Woltgang Mozart, Clarinet quintet, K381, cello | ¥Rt T T 7z = — o P
opening of first movement. - T i i i ' '

Mozart’s two upper voices reflect the movements of the two lower
voices very closely for the first nine notes here. The intervals in the

upper voices are not a alwavs exactlv the same as in the rrPspnnding

QILCs at a:ways Laallily it 1€ as U1 100 COITCSpOnein

lower ones, as they would be under a mathematical reflection; but they
are remarkably close.

Most composers have little interest in making their upper voices mir-
ror their lower ones with mathematical exactness, or in making the
contrary motion last more than a few bars. But occasionally a composer

ve pmnn pieces’ for

T T~
Ml.h_l|Ll

Béla Bartok, Mikrokosmos, No. 141, Subject and
reflection.

Incidentally, the title of Bartok’s piece points to the geometric
theme. But mirrors or reflections often appear in the titles of twentieth

Boulez, Constellation-Miroir (in his 3rd Piano sonata)
Carter, A mirror on which to dwell

Debussy, Reflets dans Ueau

Francesconi, String Quartet 3, ‘Mirrors’

Kokkonen, . .. durch einem Spiegel . . .
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Maxwell Davies, A mirror of whttenmg llght
s N

J pr————l | v

A T..
IViaawCll UdVle, 1a

Panufnik, Reflections

) o o, |

I\dVCl Miroirs

Reynolds, The behavior of mirrors
Takemitsu, Rocking mirror daybreak
Certainly not all of these pieces contain pitch reflections.

Type pv: only reversal of time

Anonymous 13th century, Sumer is icumen in.

First line: French folk song: Nous n’irons plus
aux bois.
Second line: Londonderry air.
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ing towards left-right symmetry. This is the jingle recorded on the wall
of Reading Abbey, Sumer is icumen in.
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blow-eth med, And springth the wu-de nu, Sing cuc - cu

This tune is quite unusual in starting high, dropping and then rising
again. A much commoner pattern in the folk music of western Europe
(though not in Russia) is to start at a low pitch, rise to a high point and

thaem fall kot again Twwn tunical ovarmnlag aen tho Beamehl £all cnom o Naie
LiCll 1all vaclk dsdlll. 1 wu Lytlll,dl LAdllllJlCD dle LU rioiivil Iven DUIIS AVYUHnS
n’irons plus aux bois and the Londonderry Air.
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The primitive rise—fall pattern is in some sense a grandfather of
sonata form, where a section of rising tension, starting in the tonic key,
is followed by a development section of high tension, and then by a
final section where the tension falls and the tonic key is recovered. But
in sonata form the final section is never a mirror 1mage of the first sec-
tion in any more precise sense. i
tions with a virtually exact left-right symmetry, are fairly rare.

Some examples have a programme—these are usually vocal pieces
with a libretto—and the symmetry expresses something in the pro-
gramme. One very effective example of this genre is Stravinsky’s depic-

tion of Noah’s flood spreading over the world and then receding, in his

Another famous example, with a programme of a sort, has nothing
directly to do with reflections and everything to do with balance and
stability and the other virtues of a well-ordered state. Here is Handel
implying, not quite subliminally, that The Lord God has everything very
nicely under control, thank you.
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George F Handel, Messiah, Hallelujah chorus.
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There is a slight asymmetry in the rhythm, but not enough to damage

Piano note, from H. F. Olson, Music, physics

and engineering, Dover, New York (1967), 257.

the symbolism.
Some other musical palindromes seem to have been written for
the challenge. If the symmetry is obvious enough, the performers

can eniov it as much as the comnoser. One of the best specimens of
car ne cor o1

LIy s ads lwlal ad ul LAPUSTI. AT AL ULOL SPVLIIIRINS Vs

this kind is Haydn’s reversible minuet. He was so proud of it that
he recycled it into three separate works, the piano sonata shown at the
beginning of the chapter, a violin sonata and a symphony.

In a sense, Haydn cheats with this piano sonata. If you take a tape
recording of the first half of the minuet and play it backwards, you

won 't hear anvthine r
wont near anything r

two physical properties of piano notes. First, they start with a bang and
tade out gradually; so if you play them backwards, they start soft and fin-
ish with a bang, which makes it impossible to hear them as piano notes
at all. And second, the length of time that they last depends on how loud
they are (unless the pianist brings down the damper to stop them). This

mPano ]’19 2 ]ﬁ'll nnNte A mMAavy ¢rart }\ 2
joiw that a s LV 18 o ore a

oft note B and finis
A may start o€t ote B a 1S

SJiv a1

w

'JFfP!‘
CLANA 11121511 Gl

B; when the tape is reversed, A still sounds as if it was played before B,
so the order of the notes is not reversed as it is in Haydn’s minuet.

?tring struck Key re'leased
0
a | [ N e U I
g ~10 , ~
2 I Piano \
g 20} .
L%
2 \
-30

0 .05 0.1 0.5 1.0 1.5 2.0
Time in seconds

Luigi Nono’s Canti per tredici is an exact palindrome for voices and
not Pldl’l()b ULll it uCllDErdICly uses ﬁ[ICLEb [Ild[ are llKC Wﬂat we ﬂtdr
when we reverse the tape of the piano recording. Like Alban Berg car-
lier in the twentieth century, Nono used palindrome as a structural
device in composition. Most of Berg’s and Nono’s listeners will not
notice these palindromes until they are pointed out, but for composer

and performers they bind the music together as a unity.

Type p2: only rotational symmetry

This is not at all a common pattern, and generally it is not easy to hear.
It hardly ever happens by accident, except where it falls out of some

=1 Iy - Tl | P o
otner rearure OI the mortr.
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As with the pattern pv, the non-accidental examples tend to be either
technical challenges or programmatic symbols. A serious technical
challenge should be a complete movement, or two together. This kind
of extended symmetry only became possible in twentxeth century

an example in his piano piece Ludus tonalis (‘game of tones’). If we
ignore the very last chord, the final movement is the same as the first,
but rotated through 180 degrees.

Paul Hindemith, Ludus tonalis,
beginning and end.

Nikolai Rimsky-Korsakov, theme from
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Another example is Penderecki’s orchestral Threnody for the victims of
Hiroshima. This is one of many pieces which illustrate the fact that there
is no contradiction at all between an emotionally charged topic and a
highly formal compositional structure.

To illustrate the symbolic use of p2, here is an example with some

inte crmo geometry that its composer may not have heen fullv aware of.

The story of Rimsky-Korsakov’s opera The golden cockerel revolves
around a magic bird that sings two songs, one when there is danger and
one when there is not. Rimsky-Korsakov has the ingenious idea of
making the Safety song a geometric transformation of the Danger song.
The tidiest way to do this is to choose a theme that has exactly two
images under isometries; so it should be of type ph, pv or p2, not phv
(which would make it identical under all isometries) or p1 (which would
give it four forms, not two). Should the song be flipped between Danger
and Safety by a pitch reflection (as in ph) or a time reflection (as in pv)? By
choosing p2, Rimsky-Korsakov gives the answer Yes to both possibilities.

Type phv: all possible symmetries

Interesting motifs of this type are extraordinarily rare. One appears in
an elementary piano exercise of Georg Kurtag. The round blobs are
instructions to hit the keyboard with the palm of your hand.
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(Rugalmasan, nem gyorsan *)
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Eétvds Péter.

Why are there so few examples of this type? I can only answer
with an anecdote. Once I thought I heard an example in a concert of
contemporary piano music. Since the COmMpOSser \L,um: monehauu was
sitting behind me, I asked him in the interval whether I could check
the score. When he heard what I was looking for, his jaw dropped
and he said that if he had spotted any such figure in the piece, he would
certainly have removed it. It seems that any composer with taste regards

this symmetry group as too crass to use.

Breaking out of bounds

The dot-dot-dot symbol

L XX J
repays some study. We read it from left to right. The second dot comes
from the first by a small translation to the right. If we repeat the translation,
we get the third dot. That’s enough to establish a pattern, and if we made
a few more repetitions we would soon run over the edge of the paper.

So the three dots point us to infinity. This is a purely geometrical idea
and it transfers immediately to the musical plane. Several composers have
used it, usually at the end of a programmatic piece with a message ‘and
so life goes on’. One such composer is Bedfich Smetana, at the end of his
string quartet From my life (see overleaf) where the story sinks into the
indefinite future.

Béla Bartok used the same device at the end of his opera Duke
Bluebeard’s castle. Shortly before the final ‘dot dot dot” we hear (in the
German version) the word ewig ‘ever’ repeated four times. One can hear
another example (played very softly) at the end of Benjamin Britten’s
opera Peter Grimes when Grimes is gone and the community’s life returns
to its normal cycle, while ‘in ceaseless motion comes and goes the tide .. .".

Did it have to be a horizontal translation that we used to point to
infinity? Yes and no.

This calls for a small digression, to bring in a class of transformations
of the plane that includes the isometries and more besides. Defined
mathematically, affine transformations are the transformations which take
any straight line to a straight line. One important kind of affine
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Bedfich Smetana, end of string quartet:

From my life.
)
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transformation is horizontal dilation which keeps all pitches the same but
slows down the time scale so that notes which were s seconds apart
become rs seconds apart. The number r is called the ratio of the dilation.
If 0 <r<{1 then the dilation speeds up the time. Likewise a vertical dila-
tion expands the pitch scale in some fixed ratio r but doesn't alter time.
‘vcruuu (.lllclfl()nb occur L()IlbldIlUy in DCC[HUVCH S WI’lLng He uses tnt:m
systematically as a way of generating new material out of a basic motif. But
the device is much older than Beethoven. There is a kind of canon called a
mensuration canon where a tune is played simultaneously at two different
speeds (and usually at different pitches too). This is a way of using hori-
zontal dilations. It was popular in the fifteenth century, and in the twenti-

CU’] u::ntury bCVCI'aJ (.UIHP(.)&CI'S usca 11 most l’lUlley UllVlCI' Messiaen (db 4

metaphor) and Conlon Nancarrow (who used bizarre ratios like

7 I s

! \a/ 1B, 1 \/ 2

N 16 ~ /m 3
in music for a player piano).

To come back to the matter in hand: there are just two kinds of affine
transformation of the musical plane that can be iterated as often as we

like but eventual 1y lead out towards infinity. These are horizontal trans-
lations and horizontal glide reflections, either of which will give us the
dot-dot-dot pattern. All other affine transformations of musical space
that lead us out towards infinity hit the buffers after a very few itera-
tions: either the pitch rises or falls too far for the instrument, or the
music is too quick to be playable or it’s too slow to be heard as music,
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CHAPTER 6 | The geometry of music

The best composers struggle against these limits, and where neces-
sary they find ways of deceiving the ear into thinking there has been
more iteration than in fact there has been. Two examples will suffice.

The first example is Handel fighting against the speed llmltS built
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organ part of his Organ concerto in A major:

I r

George E Handel, Organ concerto in A major.

William Byrd, Non vos relinquam orphanos.

We think he keeps doubling the speed of the repetition; this is a hor-
izontal dilation with a ratio of 0.5. But when he reaches the physical

limit, instead of rnnrmnmo the iteration hv rpnparmor faster, he rhanopq

the notes. The ear is deceived. Handel may have learned this or a simi-
lar trick from the Italian opera writers.

The second is from one of those sadly beauriful motets that William
Byrd wrote for his fellow Catholics (a persecuted minority under
Elizabeth I) to sing at Ingatestone House under the protection of Lord

Petre, Non vos relinquam nrnhnnnc ‘I will not leave you comfortless’. Tesus

O3 TR L4 LA4ERA = LOIIAIVARAESS .

is foretelling his ascension into heaven, Vado ‘I am going’.
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The moment passes quickly, but this was music to be appreciated by
the performers themselves. The Vado motif seems to move steadily
upward through the voices, pointing to Jesus’ own movement upwards
to heaven. Geometrically this is a diagonal translation iterated. In fact

the movement is not as steady as it sounds; at two of the repetitions
there is no movement upwards. Again the ear is deceived.
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This passage of Byrd seems to have entered the subconscious of a
number of later English choral composers. There is a very similar upward
movement in a passage of Gustav Holst’s Hymn of Jesus to the words
‘When | am gone’; and Tippett has a splendid example in the climax of

oms of A child of our time to the words “Walk into heaven’
orus of tia of our iime, 1O the WOrds waix Into neaven .

Friezes

A frieze pattern is a pattern that repeats itself endlessly in one dimension.

The seven types of frieze pattern.
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motifs. Since a frieze pattern keeps repeating, one of its symmetries must
be a translation; this is one difference from motifs. Geometers looked to
see what other isometries can be symmetries of a frieze pattern, and they
discovered that there are exactly seven symmetry types of frieze. In the
chart below, one should imagine each frieze pattern as running infinitely
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A line of music endlessly repeated is a musical frieze pattern. One
can tind examples of all seven types. But one shouldn’t expect too much
here; music that repeats itself over and over again is almost by defini-
tion background or mood music, not meant to be listened to for its own

interesting examples.

pit

This is the type of a pattern that repeats over and over with no symme-
tries except sheer repetition. Many birds make sounds like this, from the
tap tap tap of the woodpecker to the jug jug jug of the nightingale.
Enrique Granados has a famous and suitably repetitive portrait of a
nightingale at the end of Quejas 6 la Maja y el Ruisefior in his piano suite
Goyescas. But obviously when birds are mentioned, we have to pay a
visit to Olivier Messiaen. Here is slightly less than half of his setting of
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Olivier Messiaen, Catalogue d’oiseaux, Le
courlis cendré.

Jean Sibelius, Symphony No. 3, last movement.

——

pvt
r

Earlier we saw that the symmetry type of an arch-shape that rises and
then falls again is pv. So pvt is the type of aline of arches; we can see them

again. What makes this an interesting passage is that he does two other
things. First, he divides the violins into four groups and makes each
group start its arches at a different time. The effect is a throbbing sound
that repeats at a quarter of the length of the arch; the arch lasts four bars
but the combined pattern repeats at each bar.
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the rising side of the arch into a foreground tune. It never quite suc-
ceeds, but it holds us on the edge of our seats.

phg

A sine curve is the best mathematical example of this frieze type. What
music sounds like a sine curve? There are plenty of rippling sounds in
music, for example in Smetana’s depiction of the Vltava in Ma Viast—
though if you look at the score you will see that Smetana’s ripples are
generally a good deal less regular than the ear takes them to be. But step
forward Debussy, whose jumping jacks leap to and fro across the sky in
his Fireworks prelude. The symmetries are not quite exact, but with
music like this, who's counting?
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This is the frieze type of a single note repeated regularly and endlessly.
——Theendlessness-and the resemblance to-a church bell make this figure ———
a potent symbol of death. A repeated note hangs over the last five pieces
of Schubert’s song cycle Die schone Miillerin, sometimes dryly, some-
times frantically. In the song Die liebe Farbe it is constant throughout the
piece. In the third bar below, Schubert (always a master of
spacing) has placed a huge emptiness between the low D' and the high F
of the relentless bell. The fact that this is a major chord, which in roman-
tic music tends to express happiness, makes the passage doubly poignant.

Poco lento
T —p- v e — <
L 7 ¥ 1 1 h = r ) N . N e 1% AN )Y DO T -
T4 g e L L
¥ F—F—— == o T
Memn  Schatz bat's Griin so germ, mein  Schatz hat’s Griln S0 gem
R ——— —
— -
s T A i‘-‘.‘-'-'r-'-‘ ¥ yyyy—
rp
—
: fig: g — 4
Franz Schubert, Die schone Miillerin, Die liebe e e =TT 1 T o
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Three frieze patterns remain. In the following extract, which illus-

trates plg, the upper staff is the cor anglais, while in the lower staff two
bassoons alternately play the frieze motif the right way up and inverted.
The inversion is chromatic.
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Igor Stravinsky, The rite of spring, 14 in score. H= . % o . ﬁ e

The harp motif below illustrates pht; one can imagine a row of letter Cs
opening up to the left instead of the right. The metric is diatonic in D minor.

Igor Stravinsky, Petrushka, 53 in score.

Finally, the flutes and oboes below play a motif that one can see as
the crossbar of the epeated N for ng in the table The motlf is made

u]

"C.
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Books on counterpoint or canon contain many examples of transfor-
mations of melodies. Beyond these, one must go to the composers
themselves, the recordings and the scores. The following composers are
particularly fertile in geometrical ideas:

Johann Sebastian Bach (1685-1750) was the grand master of fugue, and
he wrote several collections of fugues which illustrate an amazing
range of possibilities.

Béla Bartok (1881-1945) rivalled Beethoven in his ability to spin
whole pieces of music out of a few notes by various geometrical
transformations.

Ludwig van Beethoven (1770-1827) hardly needs introducing. C. Rosen, The
classical style, Faber, London (1971), studies Beethoven's development of
themes, and compares him in this regard with Haydn and Mozart.

/1Q9g
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was, like Anton Webern, a student o Arnold
Schoenberg. These three composers developed Schoenberg’s twelve-
tone techniques, which were built round isometric transformations of
a sequence consisting of the twelve notes of a chromatic scale in some
fixed order.

Josquin Desprez (c. 1440-1521) was one of a number of polyphonic com-
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types of canon, sometimes of dazzling virtuosity. (Others were

Machaut, Dunstable, Du Fay, Ockeghem.)
Joseph Haydn (1732 1809) loved mu51cal trlcks and witticisms, but he

Olivier Messiaen (1908-92) had an almost obsessive interest in structural
devices—for example, scales with particular symmetry types, and
rhythmic patterns from classical Indian music. Robert Sherlaw Johnson,
Messiaen, ]. M. Dent and Sons Ltd., London (1989), gives an excellent
introduction to Messiaen’s methods.

Conlon Nancarrow (1912-98) wrote almost exclusively for player pianos,
because these instruments can produce notes with a speed and accuracy
which no human player could possibly achieve. His Studies for player piano
are a kind of modern Art of fugue, covering all conceivable kinds of canon.
PRSP QL APV P et Ay N R D + manlir am s ano wnle
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But recordings have now been issued on CDs and are well worth hearing;
the notes issued with the discs are a fascinating introduction.
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CHAPTER 7

Ringing the changes: bells and

The title page of the third edition of Fabian
Stedman’s book, Campanalogia, published in
1733. Stedman’s books were the first to
present the underlying ideas of change

ringing.

Dermot Roaf and Arthur White

Change-ringers wish to ring bells in different orders, with no bell moving more
than one place in successive rows. The mathematical problem is to devise
ways of ringing all possible orders (for example, all 5040 permutations of
seven bells) without repetition. English bell-ringers solved this problem more

began developing the concepts and terminology to tell the ringers that they
had been doing ‘group theory’ and ‘ringing the cosets’ all along.

When clocks were rare and watches unknown, people needed to be
summoned by bells to come to church—large bells make a lot of noise
and can call people from long distances. While there may no longer be
this time-keeping need, church bells are still in regular use, now often
functioning as a musical instrument played by a team, with what turns
out to be a strong mathematical aspect to the music.

Bells are hung in bell-towers or belfries and each is sounded by
pulling on a rope, one ringer to a bell, which moves the bell and gives
energy to its tongue or clapper. A bell makes a nicer noise, and the
sound carries further, if it is swung with the mouth upwards rather than
while hanging downwards or hit with a hammer. But a bell that swings

regardless of amplltude is mathematically accurate only for small
swings. With larger swings it goes more slowly—indeed, an imaginary
bell swinging through a whole circle so that it just reaches the vertical,
without going over the top, would take an infinite time to get there.
Near the top, a small change in the energy of the bell makes a large dif-

anca +tn the nerind of a cwing and en anathor foncan e n
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ing full circle is that the timing is easy to control.

Each bell sounds near the end of its swing, when the clapper catches
up with the bell, sounding once when the bell swings one way, and
again as it swings back to its original upside-down position of unstable
equilibrium. Enghsh ringers control bells with a rope tied to a wheel
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An early picture showing the details of a bell
and its mounting,.
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A Bell in Her Usual Position

Stock

Stay
Slider
Blocks
Wheel
Groove of Wheel
Fillet
Ball of Clapper
Flight of Clapper
Cannons
Timber of Cage
Gudgeons

. Lip of Bell
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the bell is moving. The two different directions are known as handstroke
and backstroke. Each swing is known as a half-pull and the complete
swing there and back with two sounds is known as a whole-pull. (There
are smaller hand-held bells to which the mathematical discussion of this
chapter also applies, but for simplicity we restrict our attention to bells
in belfries.)

There are long gaps between the successive sounds produced by any
particular bell—up to two seconds for large bells. Using additional bells
helps to fill these gaps, but raises the question of how to combine the
sounds produced by the different bells. A variety of choices is possible,
though the long interval of time between successive soundings of the
same bell always has to be taken into account.

Bells are large and expensive, especially if it is desired for them to be
audible at large distances, and only gradually over the centuries has it
become common for several separate bells to be installed in the same
building; for example, Oxford’s first sets of bells, tuned to combine har-
moniously, were cast in the seventeenth century.

For up to four or five bells, it is possible to choose the intervals
between their pitches so that, even if two or more of them happen to
sound at the same time, they produce a harmonious chord; the notes of
the full set of bells, rung in order, then form something like an arpeg-
gio. This is the common arrangement in Germany and some other
parts of Continental Europe. It is then unnecessary to coordinate the
timing of the strokes of the different bells, which are each rung at their
own natural speeds, largely determined by their natural weights; in fact,
itis this difference in the time interval between strokes on different bells
which generates much of the musical interest, by producing a changing
variety of melodic sequences, rhythmic patterns and chords.
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In the English tradition of full-circle ringing, a different approach has
been followed, which allows even larger numbers of bells to be used,
without too wide a range of weights.

Normally, the sequence of pitches of the diatonic scale are chosen,

lac when the halle are mineg in arder of cize— _fram the
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lightest bell with the highest pitch, known as the treble, to the heaviest
bell with the lowest pitch, known as the tenor, sounding the keynote.
With intervals of pitch as small as tones and semitones, many of the
is therefore important to coordinate the timing of the different bells so
that they all sound at different times.

Conventionally, the treble is numbered 1, and th 1
numbered in order of note downwards to the keynote. So, on six bells,
the downward scale is 123456. On six bells the last four will be 3456,
producing exactly the same melodic sequence as 5678 on eight bells, or

7890 on ten (denoting the tenth bell by 0).

Ringing rounds and call-changes

The simplest (and oldest) procedure was to ring all the bells at the same
speed and in regular succession, evenly spaced in what are called rounds, with
the bells in order from the treble to the tenor; for a set of eight bells, this is:

1234567812345678123456781234567812345678, etc.

A row is a sequence in which each bell sounds once; here, each occur-
rence of 12345678 is a row. To make the rhythm clearer, most teams of
ringers leave small gaps after alternate rows: bear in mind that each bell
rings successively in opposite directions:

1234567812345678 1234567812345678 1234567812345678, etc.
These gaps occur conventionally after the backstroke row and before
the handstroke row.

An evening spent playing unchanging rounds might be considered
uneventful, and so the practice developed of changing the order of ring-
ing every so often. Because bells are heavy and slow; this cannot happen
rapidly, but two adjacent bells can be interchanged without too much
difficulty. You might start with rounds 12345678 several times; you
might then call out an instruction to the ringers of the second and third
bells to exchange the places of their bells in the ringing order, so that
13245678 is rung and repeated until another instruction is called. This
way of generating different orders is known as call-changes.

Ringers often use the word ‘change’, both to mean ‘row” and to mean
the process by which one row is changed to produce another row; here we

1 b U PU DU (NIRRT NIt IO BN S N I
shall be more precise and use only this latter meaning. Some commonly

1723
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used phrases can be interpreted in either sense: a ‘peal’ of 5040 changes’
includes 5040 changes as well as 5040 rows, although ringers usually
think of the rows as what is being counted; the same applies to ‘ringing
the changes’, the title of this chapter.

designed to include musically attractiv

A2 0

Comnositions in ri
nrn

Compositions i e
sequences, which are usually based on sequences running up or down
the scale (‘roll-ups’), sometimes with single notes omitted to produce
slightly larger intervais of pitch.
twice so as to include all the bells, produces 135246 on six bells, or
13572468 on eight. This is the best known of these favourite rows; it is
called Queens, because a Queen of England is said to have commented
on how nice the bells sounded when she heard it being rung.

Reversing the first haif of Queens on six bells produces Whittingtons:
531246; when heard by Dick Whittington leaving London as “Turn
again, Whittington; Lord May'r of London’, it persuaded him to return
and, eventually, become Lord Mayor.

Another popular row is Tittums 748, in which high and
low notes alternate; here the low notes stand out when rung because
they are rather louder, producing a shorter but spaced out descending
scale.
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Call-changes require a lot of calling on the part of the conductor, the
person in charge of a piece of ringing. One way of saving effort for the
ringers would be to place a music stand in front of each one showing
the successive rows, or to write them on the wall of the belfry, and
instruct the ringers as to what new row to ring when the conductor calls
‘Change’. This became common in the seventeenth century and still
survives in a few remote country towers.

Of course, someone needs to work out the successive rows, making
sure that no bell moves more than one place at a time, because more
movement would require too much change of speed between one row
and the next when a change is made. For four bells this might lead to
music like this:

12341234 — 12341234 — 12341234 — 21342134 —
21342134 — 21342134 — 23142314 — 23142314 —
23142314 — 23142314 — 23142314 — 23142314 —
32143214 — 32143214 — 32143214 — 32143214 —
31243124 — 31243124 — 31243124 — 31243124 —
31243124 — 13241324 — 13241324 — 13241324 —
13241324 — 12341234 — 12341234 — 12341234.
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Here the conductor has decided to keep the largest bell (4) ringing at a
steady speed and change one pair of the other belis every few pulls, not
necessarily at regular intervals. (Here, each new row is indicated by

bold type.)
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bearings on which the bells swing improved, it became possible to
change their order more frequently. Indeed, it became common to

change after each whole-pull:

12341234 — 21342134 — 23142314 — 32143214 —
31243124 — 13241324 — 12341234

—it was then unnecessary for the conductor to call ‘Change’ each time.
As bearings continued to improve further, the same touch (a set of
successive rows starting and ending with rounds) could be rung in half-
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the arrows and use bold type to indicate the pair of bells that have been
interchanged from the previous row; for example, 1234 is followed by
2134, which in turn is followed by 2314 and then 3214:

12341234 12341234 12341234 21342314
32143124 13241234 12341234 12341234

This touch was known in the seventeenth century as ringing the sixes,
because six different rows were rung, each only once, apart from the
rounds at the beginning and end. These are in fact all the possible
arrangements, and are known as the extent on three bells.

After a while, the ringers learnt what to do when ringing the sixes, and
no longer needed the rows written down. They would start changing when
the conductor called ‘Go” and stop in rounds when he called “That’s all’.

Similar methods of ringing different rows on larger numbers of bells
were developed. The twenties on five bells were:

1234512345 1234512345 2134523145
2341523451 3245134251 3452134512
4351245312 4513245123 5412351423
5124351234 1523412534 1235412345
1234512345 1234512345

1234512345 1234512345 1234512345
2134523145 2341532415 3214531245
1324513425 3142534125 3421543215
4312541325 1432514235 4123542135
4231524315 2413521435 1243512345
1234512345 1234512345 1234512345

The twenty-fours on five bells (with bell number 5 fixed behind) were:
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In both twenties and twenty-fours, only one pair is interchanged at a
time, so most bells are static. It would sound more interesting to change
more than one pair at a time whenever possible. That might mean a bell
moving from, say, third place to fourth place and then back to third

place in successive rows. which reauires larger changes of speed than in
1 s W I 1S

rows, which requires larger changes of speed than in

the early methods mentioned so far. Such versatility became possible
only when better bearings became available.

This practice of change ringing started in England and spread through-
Fabian Stedman’s 1668 Tintinnalogia: or the art of change ringing, which
he followed in 1677 with Campanologia: or, the art of ringing improved.
The methods developed by Stedman and his fellow-enthusiasts anticip-
ated by a century algebraic ideas that were subsequently rediscovered
by mathematicians such as joseph-Louis Lagrange, in what came to be
called the theory of groups.

There are now over 5200 sets of bells hung for change ringing in
England, another 200 in the rest of the British Isles, and about 100 else-
where in the world. Of these 5500 sets, 3500 contain 5 or 6 bells, 1700
have eight bells, 200 have ten and 100 have twelve. Recently, two towers
have had extra beiis added, so that one has 14 and the other 16 beiis.
A few sets have one or more semitone bells added so as to provide
subsets in different keys.

Modern change ringing

The basic idea of modern change ringing is to keep changing the order,
and never to ring any particular order more than once, except for
rounds which appears at the beginning and end. Each bell may move
only one place at a time and, generally speaking, no bell should stay in
place for more than two successive rows, except that the tenor may remain
at the end all the time. To make learning the changes easier for the ringers,
the paths of most bells should follow the same rules, although in most
methods one or two bells follow a simpler standard path.

How long does it take to ring every possible row? With three bells
there are only 6 rows in the extent, so (at two seconds each) it takes only
12 seconds to ring them all. With four bells there are 24 rows (48 seconds);
with five bells there are 120 rows (4 minutes); with six bells 720 rows (25
minutes); and with seven bells 5040 rows (3 hours). That is long enough
for most people, so the standard long performance is a three-hour peal
of 5040 changes. The standard short performance is a quarter-peal of
1260 changes, taking approximately 40 minutes, which is typical of the
length of time that bells are rung before church services.

When peals are rung on eight or more bells, only a fraction of the
full extent can be rung. This allows some scope for selection, so as to
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include a larger proportion of rows that are preferred for musical reasons;
any ringing with 5000 or more different rows is recognised as a peal.
How can we obtain all these different rows?

Consider three bells numbered 1, 2, 3 in order from the highest note.
t

The individual bells can move only one place at a time, so there are only

two possible ways of ringing the extent, depending on whether the first

bell or the last bell holds its place after the first change:

2 321 231 2

1
31 321 312
31 321 312

o W
LN

1 12
3 2

[
—
W

There are several different methods for ringing four bells, one of which,
Plain Bob Minimus is shown below. (Minimus refers to the change ringing
of four bells—other numbers of bells have different names, given
below.) We first exchange two pairs of bells (denoted by x as all bells
move); the next time, we exchange the middle pair, denoted by 14 (‘one-
four’) because the bells in first and fourth places do not move. This
alternation is repeated until after eight changes the order would return
to rounds if we exchanged the middle pair. We avoid this by changing
instead the last pair (denoted by 12). We then repeat all that we have
done so far, twice more. We obtain the following pattern.

Note that bell 1 (the treble) has a very simple zig-zag path called plain
hunting. This pattern is similar to that followed by each bell in the case

of three bells described above. Next, look at the paths of bells 2, 3

Plain Bob Minimus
Paths of bells

2 3

é 3

SN

. 1234
14 2143

2413
4231
4321
3412
14 3143
1324
< B2

3124
3214
X 2341
14 5431
4213
14 4123
X 1432
1423
X 4132
* 4312
3421
3241
2314

2134
X 1243
12 1733 |

bid
<
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and 4: these three paths are the same, but the bells start at different
points—rather like singing a round. These paths are based on plain
hunting, with differences every eight changes. If you draw the corre-
sponding paths for the twenty-fours described e rller you will probably

aoree that the nath of the workin "‘P" I‘Ot in

o
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Bob Minimus—based mainly on plam hunting with steady movement for
several changes at a time in each direction—is easier to learn; it is also
physically easier to ring, especially on heavier bells. The basic idea is for
the start of the row): then another bell does two consecutive blows in

second place and returns to lead, and the other working bells repeat the
nnqmnne ThPV haVP OCCU_Y“P(] mn the nICVK)U_S tWQ rows (k_nown as d{)dO’-

ing) and continue plain hunting from their new positions until the next
time the treble leads.

More bells

This method of ringing works equally well on more than four bells, so
the name Plain Bob is given to a family of methods—Plain Bob Doubles
on five bells, Plain Bob Minor on six belis, and so on.

Our general principle in choosing methods is that we move as many
bells as possible at most of the changes. Now with five bells we can
exchange two pairs at each change. We call changes on five bells doubles,
even though we may occasionally change only one pair—indeed, to
obtain all 120 arrangements of five bells, we need to ring at least two
single changes. Shortly, we will describe Plain Bob Doubles—the Plain
Bob method on five bells.

It often sounds better to keep the heaviest bell (the tenor) at the end and
change only the front bells, as the gap that follows allows the favoured

nusical combinations at the end of the change to stand out more clearly.

As most towers have an even number of bells, this means that an odd
number of bells will change their positions. Ringers find steady rhythm
and accurate striking rather easier with the tenor ‘covering’ in this way,
and listeners can more easily appreciate the structure of the ringing.
Experts, however, find greater challenges and variety in ringing on even
numbers of bells, with the tenor continually changing its position.

If seven bells change, we are ringing Triples, because there are triple
changes—for example, 1234567 changing to 2143657 has three pairs
swapping: 12, 34 and 56. The other names for odd numbers changing
arc Caters on nine bells and Cinques on cleven bells. With even numbers
changing we have Minimus (four bells), Minor (six bells), Major (eight
bells), Royal (ten bells) and Maximus (twelve bells).

With larger numbers, we usually keep the heavier bells working
closely together and frequently arrange ‘roll-ups’, such as ----5678 on
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composers try to include them all at backstroke since it is felt that the

gap that follows improves the music. Other popular sequences are

---6578, ----7568 and ----2468 (as in Queens)—all at backstroke.
A peal on eight or more changing bells can include only

3425196870
2241569780

L2207

2314657980
2136475890
1263748590
1627384950

6123748590
6217384950

CLL/ 285720

2671839450
2768193540
7286915340
7829651430

8792564130
8975246310

2L

9857423610
9584732160
5948371260
5493817620

4539186720
4351968270
3415692870
3146529780
1364257980
1632475890
6134257980
6312475890
3621748590
3267184950
2376819450
2738691540

9358274610
9532847160

PpeF4e

5938274610
5392847160
3529481760
5324918670

5239481760
2534918670

Z 200

2359481760
3254918670
2345196870
2431569780

4235196870
4321569780

S24L1007/70V

3425196870
3241569780
2314657980
3216475890

3124657980
1326475890

2L

1234657980
2136475890
1263748590
1627384950
6123748590
6217384950
2613748590
2167384950

1276839450
2178693540

tixed relationships to one another. This eases the problems of compo-
sition and ‘proof” (the verification that rows are not repeated), as well
as improving the music.

changing bells is related to Tittums (see above), which on ten bells is
1627384950 (denoting the tenth bell by 0). Most methods are based

more or less (‘IncPlv on hlmn hunting, and if Tittums (or any other

change with the heavier bells in the same arrangement) occurs any-
where in a composition, then the same spaced out sequence 7-8-9 and
its reverse 9-8-7 with heavy bells alternating with light bells, also occur
in several of the preceding and following rows.

In addition—and perhaps valued even more highly—four steps away

from Tittums in plain hunting on nine bells with the tenth covering
(coming at the end), the heavy bells come together at the end of the
change to produce the same melodic pattern as the 4-bell equivalent of
Whittingtons: ------ 9780. (The 8-bell equivalent of this is ----7568, which
was one of the examples quoted above.) This is illustrated by the

sequence on the left, which could be produced in Grandsire Caters.
Another musical effect, common in all but the most basic methods,
and valued both when ringing with and without a tenor behind, is par-
tial repetition, in which one or more pairs of bells dodge (as explained
in Plain Bob Minimus) while other bells elsewhere in the change must do
something different, so that no row is produced twice.) Dodging in the

musically conspicuous position at, or just before, the end of the row
produces an effect rather like rhymed verse, with rhymes between the
ends of alternate lines in groups of four or six. This occurs once every
eighteen changes in Grandsire Caters, breaking up what is otherwise sim-
ple plain hunting; but it occurs continuously, in biocks of six rows, in
Stedman Caters, which many regard as the most musical of all methods.
Here a touch might include the Tittums-like rows on the right, in which
you can hear the alternation of light and heavy bells.

A non-ringer may like to try to listen to the treble (bell 1), which usually
has a path different from (and simpler than) that of the other bells, as in
Plain Bob Minimus (described earlier) and Grandsire Caters. Stedman Caters is
a rare exception, as here all the bells have the same rather complex path.

Proof

Recall that one of the ground-rules for change ringing is that the

bells should not be rung in the same order more than once, and that
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checking whether this is the case is called proof. For three or four bells
it is easy to ascertain that no row is rung twice, by inspection of the
written-out rows: simple examination of the extent of Plain Bob
Minimus shows that the rows are all different. With larger numbers of

ection of all the rows is more laborious. Of course, we ca

, inspection of all the rows is more laboriou can
now make computers do the work, but it is reassuring and illuminating
to see the proof for ourselves.

Let us look at the 24 rows of Plain Bob Minimus and group them in fours.

122

1234 2143 2413 4231

4321 3412 3142 1324

1342 3124 3214 2341

2431 4213 4123 1432

1423 4132 4312 3421

3241 2314 2134 1243
Here, each set of four can be labelled by the bold row with 1 at the
front. If this row is labc, then the others in the set are alch, aclb
and cabl; so, if the rows with 1 at the front are all different, so are the

other rows.
There are six rows with 1 at the front:

1234 1324 1342 1432 1423 1243.

These are all different, so the proof is complete. Note that these are just
like the six different rows on three bells (123 213 231 321 312 132), with
each digit increased by 1 and then 1 placed at the front.

We can now see how to generate the 120 rows on five bells. We start
by exchanging the front two pairs (from 12345 — 21435), then the back
two (21435 — 24153), and keep repeating. We can group these rows in

leads of ten rows:
12345 21435 24153 42513 45231 54321 53412 35142 31524 13254.

After these nine changes, a double change on the back two pairs would
return us to rounds (13254 — 12345), so instead we exchange only the

in the 24
75

natr
pail i uic

n (12254 — 13524). If we then re
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12345 13254 13524 15342 15432 14523 14253 12435

and the final row is 12345. So we return to rounds after eight sets of five
rows—that is, four leads of ten rows—giving a total of 40 changes; this
is the Plain Course of Plain Bob Doubles.

Let us now look at Plain Bob Minimus. The first eight rows are

1234 2143 2413 4231 4321 3412 3142 1324

If we now add one to each digit and put 1 in front, we have the eight
rows from Plain Bob Doubles. In order to ring the twenty-four rows of

Plain Bob M1mmus, we make the eighth change from 1324 to 1342, and
not from 1324 to 1234.
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Now, if we make the 40th change of the Doubles, 12435 — 14235,
and then repeat these forty changes, we reach 13425, and after another
forty changes we reach 12345; this gives the full extent of 120 different
rows. In order that the ringers know what to do, the conductor calls

DAk’ ar tha anth anth
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pattern has to be altered here.
We can easily extend this method to more bells, with a new change

(summoned up by a new call) each time we increase the number of

bells. It turns out that more complicated basic patterns enable us to
reduce the number of calls to just two.
The problems of proof can involve very sophisticated mathematics.

(“J\)nn theorists pu 1blish learned papers on it, and computer experts
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produce programs to verify compositions by what group-theorists call
‘sledge-hammer’ methods.

A simple example is with Grandsire Doubles, in which the basic
method uses three changes: a double exchange of the front and back pairs

(12345 — 21354), a double exchange of the back two pairs (21354 —
23145). and a double excha ange of the front two pairs (23145 — 32415).

L2152 ), alit a LUK w20 AT VWY P

All rows that we can achieve with these changes can be obtained by an
even number of single exchanges; these arrangements are called even
permutations of 12345.

Permutations

It may be helpful to give a brief explanation of permutations. If we take
five objects labelled 1, 2, 3, 4, 5, then the ordering 23451 is an even
permutation of 12345 because it can be obrained by four exchanges of a
single pair, whether adjacent or not, and 4 is an even number; for example,
we can take:

12345 — 21345 — 23145 — 23415 — 23451.
Similarly, an odd permuiation is obtained from an odd number of
exchanges; for example, 24351 is an odd permutation of 12345, because it
can be obtained by five exchanges:

12345 — 21345 — 23145 — 23415 — 23451 —» 24351,
A permutation cannot be both even and odd. For five bells there are
120 (=5 X 4 X 3 X 2 X 1) possible permutations in the extent, consisting
of sixty even permutations and sixty odd permutations. So, in order to
ring the extent, we need to include one single change (such as that from
13254 to 13245).

The 24 rows of Plain Bob Minimus fall naturally into three leads, in
each of which the treble goes from front to back and returns:

1234 2143 2413 4231 4321 3412 3142 1324

1342 3124 3214 2341 2431 4213 4123 1432

1423 4132 4312 3421 3241 2314 2134 1243,

Mathematicians call these twenty-four permutations of four items a
group, because the permutations satisfy certain relationships when done
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Music and mathematics

successively. The first lead (plain hunting) forms a smaller group, called
a subgroup of the full group. The three leads are known as cosets of the
subgroup; together they make up the whole group, and each row
belongs to exactly one coset.
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mathematicians came and told them that they were actually ringing
cosets. But, although ringers had worked out various ways of ringing
the extent of 5040 changes of Grandsire Triples, they could never do it

etv—witl il ol ] 1 £ o 1
change), even though alternate rows are even and odd permutations.
Thus, the ‘even and odd” argument we used above to show the imposs-
ibility of ringing the extent of Grandsire Doubles with pure double
changes does not apply here.

But ringers went on trying to solve the problem. Eventually a non-
ringer, William Henry Thompson, sometime scholar of Gonville and
Caius College, Cambridge, was told of the problem and published in
1886 a 17-page pamphlet showing how the leads of Grandsire Triples can
be grouped together into what are called Q-sets. He showed that with
pure triple changes the number of Q-sets in any composition must be
odd. Since an even number of Q-sets would need to be rung to com-
plete the extent, the mystery was solved.

After the publication of this work, composers of change ringing
started a serious study of group theory; conversely, even non-ringers
have found ringing problems worthy of serious study.

A similar problem arose in Stedman Triples, where composers also
wanted to ring an extent using only triple changes. The calls are called
‘bobs’, which are triple changes and often rung in pairs (known as
twin-bobs, which make the ringing easier), but can legitimately be rung
separately and ‘singles’, which are double changes. Many ringers tried
for nearly three hundred years to find a composition without singles.
Mathematicians equally failed to prove that it was impossible. Recently,
however, the niece of one of the authors proved that it is impossible to
ring an extent with twin bobs only—and shortly afterwards a ringer
composed an extent with odd bobs, but no singles. This composition
has since been rung.

new pieces is to find a mathematical language in which to describe the

effect of the changes. We have just seen how the symbolism of permu-

tations and group theory, devised by mathematicians in the nineteenth

century, has proved useful in this regard. Another mathematical language,

developed in the twentieth century, has a stronger visual quality that sim-
: 1. [, L R
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Three bells (singles)
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CHAPTER 7 | Ringing the changes

involving points and lines, called graphs; note that here we are not con-
cerned with a ‘graph’ with coordinate axes.

The six rows of Singles can be shown as the points of a graph, with
lines joining those pairs of points that can be reached by exchanging
pairs of bells. If we exchange the front pair, keeping the bell in third
place fixed, we use a dashed line and write a, while if we exchange the
back pair, keeping the bell in first place fixed, we use a solid line and
write b; for example, 123 and 213 are joined by a dashed line, and 123 and
132 are joined by a solid line. An extent of Singles then corresponds to a
‘cycle’ in the graph, beginning and ending in rounds and visiting each of
these six exactly once. The two ways of doing this, clockwise (ababab)
and anti-clockwise (bababa), are readily apparent from the diagram.

The twenty-four rows of Minimus can be displayed graphically in a
similar manner. Different methods allow different changes: in the Plain
Bob Minimus we have three changes:

e a simultaneous exchange of two pairs (marked with a solid line);
e an exchange of the middle pair (marked with a dashed line);
e an exchange of the last pair (marked with a crossed line).

The changes are numbered from 1 to 24 (abababacabababacabababac).

Four bells (Plain Bob Minimus)
[(ab)} ac)® 17 21

1423 O [ 2314

O 2143 2341 X
2 12, @ o2
24130 O 2431 bo------ o

i
42310 44213

.

4 14>,
1321 4123

15

4132

17

Note that some changes, such as 11 on the diagram, are represented
here by two half-lines that must be connected to complete the diagram,;
that is, the row 3214 (at 8 o’clock) is followed by 2341 (at 2 o’clock), and
is then followed by 2431. This antipodal identification, when carried out
completely, produces a non-orientable surface, called a projective
plane. This surface can be realised in 4-dimensional space, but cannot
be drawn in the 3-dimensional space in which we live, nor in the
2-dimensional space of our diagrams.
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Note also that the three-octagon model displays not only the three
leads of Plain Bob Minimus, but also the three cosets of the relevant
subgroup in the group of all twenty-four permutations.

Most methods have only occasional places where bobs

he called: hatween thece naintc 1 1
0€ caueq; oetween these points

row. For example, in the Plain Bob Doubles described above, the bob can

rthe r
s LAIT X

be called only when the treble is at the front—that is, at every tenth
change. This means that the treble has the simple plain hunting path: as
describe this method in leads of ten rows:

12345 21435 24153 42513 45231 54321 53412 35142 31524 13254

is the first lead which we can summarize as (A) 12345 — 13254;
then, if no call is made, (B) 13524 — 15342;

then (C) 15432 — 14523 and (D) 14253 — 12435;

if now a bob is called, we ring (E) 14235 — 12453;

then (F) 12543 — 15234, (G) 15324 — 13542 and (H) 13452 — 14325;
another bob, and (1) 13425 — 14352,

then (J) 14532 — 15423, (K) 15243 — 12534 and (L) 12354 — 13245;
and the final bob gives 12345.

Five bells (Plain Bob Doubles)

126

14523 12435
C’' 15432 - 14253 D'
L4532 1 T 15243 15234 [ g+ pr|12453
15423 12534 12543 14235
A \ A A
13425 12354 13542 14325
14352 I B L 13245 15324 |G’ H'i13452
12345 |[A ~ B| 13524
13254 15342
v A Y A
14253 15432
12435)0 € 14523
13452 [H 14235 15423 | ) 1| 14352
14325 12453 14532 13425

A y A
15324 12543 12534 13245
13542 | 15234 1543 (k' 1']12354
B’ 15342 i 13254 A'
13524 12345

These are shown on the graph; each point represents a lead, marked
by its beginning and end; lines with arrows denote the usual route and
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CHAPTER 7 | Ringing the changes

Five bells (Plain Bob Doubles on a
truncated octahedron)

the effect of a bob is the same in both directions. Of course, the leads

can be rung forwards or backwards, so each row belongs to two differ-

ent points, and we must visit exactly one of each such pair of points.
The previous graph was drawn on a plane, but it could equally well

hodron with nairs of leade riine in onno-
LNALUAL VY LILL k’ ALD WV lbuuo AUl 16 14 Ut’t’u

site directions being exactly opposite one another. If we ‘identify’ each
such pair (regarding its two points as a single one), we can extend this
antipodal identification to the entire truncated octahedron, and we
lines, we then can represent this graph by another plane figure, but now
only involving half as many vertices, edges and regions.

With more bells. we mav be calling both Bobs and Sinoles. so there will

I IIAATE DA, cilldy Do Ay 1 DO alldl "O"" 1

be three different routes from each lead and three routes to each lead.

Modern compositions

We have seen that four types of change are used in Plain Bob Doubles:
double exchange of the front two pairs, double exchange of the back
two pairs, exchange of the belis in positions 3 and 4, and (at the bob) the
exchange of the 2-3 pair. The treble is plain hunting and the paths of
the other four bells are all alike. The path is symmetrical (the same
backwards and forwards); as this makes it easier to learn, composers do
their best to create symmetrical methods.

A mathematician might wonder whether all 120 rows can be rung
with only three types of change. Suppose that we use only the double
exchange of the front two pairs, the double exchange of the back two
pairs, and the exchange of the back pair; then the graph has exactly
three lines at each point, none with an arrow. The resulting diagram has
more than 120 points, because some links between points would so
confuse the diagram that it is simpler to represent some rows by two or
three points (to some of which only two lines are drawn). There are ten
half-lines joining five pairs of rows. The first twenty-four rows (rounds
being row 0) of White’s No-Call Doubles are identified—other identifica-
tions can be obtained from the symmetry.

With these identifications around the periphery of the diagram, we
obtain the appropriate graph with 120 points (see overleaf). The result-
ing surface is rather complicated!

The five-fold symmetry of this diagram facilitates the finding of a cycle
that leads to an extent. Each set of five points is equivalent under rotation
by multiples of 72° about the centre of the diagram. By identifying each
such set to a single point, we obtain a simpler diagram with twenty-four
points. The surface obtained here by identifying the four half-lines as indi-
cated is called a Klein bottle, a one-sided surface which is well known

among tOpOlOgiStS 4as a

with no inside (so of no use on picr
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Five bells (White’s No-Call Doubles)

12345 ((ac)? (ab)? ac (ab)? (ac)? ab]®

o
QDN 00N AV WA - O

PO RO RO R D — — e — e
W OO0 NN U R W N —

One cycle of length 24 in the simpler diagram, when drawn on the
larger graph, ends either at the initial point or at a corresponding point
(the initial point rotated through a multiple of 72°). The former case—
for example, (ac)’ab(ac)’ab—gives a touch of 24 changes; the latter
case—for example, ((ac)’(ab)’ac(ab)*(ac)’ab))’—gives the extent of
120 changes. The numbers in the large diagram correspond to the first
24 rows of this extent.

In music thus composed, the plain course is the extent, so no special
call (a bob or a single) is required. In December 1984, this method was

- - o1 M
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CHAPTER 7 | Ringing the changes

Five bells (White’s No-Call Doubles)
5 [(ac)? (ab)? ac (ab)? (ac)? ab)?

T T
123
| / ----- K
a/\ﬁ
| | 14 23
ottt I5 CHHH4+08 13 O+ O O—— O

the band White’s No-Call Doubles. This method is not symmetrical, as the
backwards version is different, so it was not easy to learn, but exhaust-
ive computer analysis has shown that there is no symmetrical three-
change Doubles method that has the extent as its plain course.

A variant of this method is known as Reverse White’s No-Call Doubles,
and was rung at the Carfax Tower, Oxford, in February 1985. This basic-
ally turned the previous piece back to front, by using the double
exchange of the back two pairs, the double exchange of the front two
pairs, and the single exchange of the front pair—instead of the double
exchange of the front two pairs, the double exchange of the back two

pairs and the exchange of the back pair. A similar diagram led to

another viece. Western Michiocan University Doubles. which w

another piece, t Michigan University Doubles, which wa

at the Carfax Tower in July 1987.

Nor is the appeal of change ringing today contined to the United
Kingdom. In April 1991, the first Irving S. Gilmore International
Keyboard Festival was held in Kalamazoo, Michigan, USA. The pro-

gramme on the opening night featured the world premiére performance
of Kalamazoo composer C. Curtis-Smith’s Concerto f}w left hand and

P artis-smitn § concerio ey Nl L

orchestra, written for and performed by Leon Fleisher. The final move-
ment of this concerto incorporates elements from change ringing,
including Plain Bob and Western Michigan University Doubles, to great effect
in both piano and orchestra. This was a noteworthy occasion for the
mtroductlon of change ringing, through the programme notes and
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CHAPTER 8

Composing with numbers: sets,

The opening of the Trio from the Minuet

and Trio of Schoenberg’s Piano suite, Op. 25,

showing the disposition of the six forms of

P T - . . R VUl S Sy
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Jonathan Cross

Throughout the twentieth century mathematical ideas emerged as basic tools
for the composer. Here we consider a range of these, from the twelve-tone row
of Arnold Schoenberg and the magic squares of Peter Maxwell Davies to the
use of set theory and geodesic surfaces by lannis Xenakis.

Accusations of lack of artistry, lack of creative imagination, and even

lack of musicality have been hurled by critics and music-lovers alike at
very many twentieth-century composers, and not least at the Viennese
composer, Arnold Schoenberg. His ‘discovery’, as he put it, in the early
1920s, of his ‘method of composing with twelve tones’, was seen by
those at a distance from his work as being a kind of compositional
equivalent of those ‘painting by numbers’ kits that can be bought in
children’s toy shops. In Schoenberg’s composing kit was to be found the
composer’s equivalent of paint and brushes—namely, the twelve notes
of the chromatic scale, arranged in any order of the composer’s choos-
ing, so long as each note appeared only once (a ‘tone row’). The over-
printed canvas—for Schoenberg—was often a ready-made form from
the musical past: a movement from a Baroque suite, a waltz, or even a
sonata form movement. Onto this canvas the tone row was laid, accord
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sion and retrogradation).
Put in this way, it is hardly surprising that Schoenberg has recurrently
been misrepresented as the bogeyman of twentieth-century music.

Nineteenth-century Romantic thought had led us to believe that the
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ordinary society. He was someone in touch with the muses Who waited
for inspiration to strike before pouring out his soul, by means of some
mystical process, in order to produce works of art to be revered by the
masses almost as if they were holy relics—a surprising attitude, one
mlght think, for a age which paradoxically saw the rapid development

lagical orinet:
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Music and mathematics

suggesting quite the opposite. Twelve-note music had nothing to do
with inspiration, or even with musicality, but was seen as mechanical or,
worse still, mathematical.

However, this is a misguided view. As will be seen below, many

comnnsere ﬂ{" J’\‘P hXIPhrlPrh centmrvy ‘Fﬂllh{“ nnm]’\Pre nnr“ vamr (“IC

vvvvv posers wentieth century found numbers and us
mathematical models a useful source of compositional material or of
processing material. In the hands of some, the results certainly are
mundane and mechanical. But mundane and mechanicai music is
which such number systems are put that makes for a ‘successful’
piece of music, not the fact that numbers in themselves have been
compositionally deployed.

Why, then, did Schoenberg feel it necessary to invent the twelve-note
method? The answer to this question shouid teil us much, not only
about Schoenberg’s peculiar historical predicament, but also about why
so many composers in recent decades have attempted to frame their
music within the context of mathematics.

Arnold Schoenberg

Schoenberg presided over the break-up of tonality, the systemn that had
governed the composition of music for 300 years. When, in 1907, he
tinally abandoned a key-signature in the finale of his 2nd string quartet,
it was not a wilful attempt to destroy the past; rather, it was an
inevitable and necessary step. Tonality had reached the end of its useful
life; it could no longer contain the extreme levels of chromaticism and
dissonance that had developed in music. The dissonance had to be
emancipated.

But with the abandonment of tonality, Schoenberg was confronted
with the problem that nearly all composers of the twentieth century
had to face. Where was he now to begin? There was no obvious
context, no common practice within which to start writing. With every
piece he had to begin afresh, had to create his own rules and modes of
operation, his own structures. At first he was able to write only very
short or fragmentary pieces, or was compelled to rely on texts to
structure the music. But eventually he moved to a position where he
began to use contrapuntal techniques to provide a more logical
structure, and eventually this became codified in the twelve-note
system. His aim in adopting the ‘method’” was to provide comprehens-
ibility (out of the ‘chaos’ of free atonality), its main advantage, he
claimed, being its unifying effect: ‘In music there is no form without
logic, there is no logic without unity’. The rigour, the mathematical
logic, of the twelve-note system was, in some senses, a substitute for
the logical rules of the tonal system.

132



cHAPTER 8 | Composing with numbers

However, and this is perhaps the most important thing, Schoenberg
did not see the method as a general panacea for the ills of twentieth-
century music. Far from it: “The introduction of my method of
composing w1th twelve tones does not facﬂltate composing’. The method
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place. As he wrote, ‘One has to follow the asic set; but, nevertheless,
one composes as before’, a view echoed almost exactly by his pupil

Webern, ‘For the rest, one composes as before, but on the basis of

Figure 1.
the Trio.

The six forms of the row used in

the Tow ™
Composers of the twentieth century found many ways around this
central problem. Some adopted and adapted Schoenberg’s method;

others, as we shall see, drew on mathematical sources such as set theory,

Wl < OIVIIRAY AL INAA AL a2l OIS id ALY,

game theory, magic squares, Fibonacci numbers, and so on, to provide
them with material or methods of working. Neither the method, nor
mathematics, nor any other system, has made the actual act of com-
position any easier, nor (necessarily) any more mechanical.

Let us consider an example of Schoenberg’s twelve-note practice: the
Trio from the Minuet and Trio of the Piano suit e, Op. 25 (1921-3). Pu)'nrp 1

shows all the material for the Trio. The form of each row is indicated by
a letter: P=prime (or original), I=inversion, R = retrograde (the
prime form backwards) and RI = retrograde inversion (inversion
backwards). Of the 48 possible forms of his twelve-note row, Schonberg
uses just six in the Trio: the row itself (P-0), the row transposed up a

tritone (P-6), this transposition backwards (R-6), the inversion of the

....... L=V ¢ this tr 13pP0 1 1.9 L0 ANVEL IO (23 Lo

row (I-0) and its tritonal transposition and retrograde (I-6 and RI-6).
Already Schoenberg is having fun with the peculiar properties of this
row, with certain patterns that remain constant across the geometric
transformations. For instance, the row spans a tritone from E (note 1) to
B (note 12), so that by employing transpositions only of a tritone, each

form of the row will hPorm with either an E or a B’ This interval will

then become explicitly represented in the music when, as happens in the
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Trio, the six forms of the row are strung together. Another invariant
across the transformations is a further tritonal pair G-D* (symmetric-
ally placed within the E-B pair), and a feature is made of this in the
music.

So how does this manifest itself com
beginning of the chapter shows us. What we see and hear is a beauti-
fully formed piece of geometry realised in music. The Trio is canonic
throughout and the structure of the row and its transformations
tritone in inversion at a bar’s distance: P-0 imitated by I-6, and -0
imitated by P-6. The second half splits the row into groups of four, still
an inversional canon but now at the octave (P-0 imitated by I-0). Finally,
we return to two-part counterpoint where R-6 is imitated by RI-6.

Thus, though Schoenberg has followed the basic set throughout,
nevertheless, in terms of transpositions and deployment, and in terms
of rhythms, registers, dynamics and form, Schoenberg has composed
freely. The row provides intervallic material; it does not do the com-
poser’s work for him.

Interestingly, Schoenberg was not the first to invent a twelve-note
system—such ideas were evidently ‘in the air’ in Vienna in the
earlier years of the century. Josef Matthias Hauer, a Viennese contem-
porary of Schoenberg, had already devised a different system of
composing with all twelve notes before Schoenberg. Hauer’s ideas
were based on what he described as cosmic laws, and (notably) he

proposed that music—specifically, atonal music—represented a supreme
kind of mathematics.

A lban Rero

4 3, L At =)

Schoenberg’s pupils quickly followed their teacher’s example by adopt-
ing the twelve-note method. The first substantial work of Alban Berg’s
to use the method (although not in every movement) is the Lyric suite
for string quartet of 1926. The outer section
‘allegro misterioso’, employ the method: indeed, its structure is
dependent on a simple mirroring device where two-thirds of the first
69 bars of the movement are mirrored exactly in the last 46 bars and
frame a central, more freely atonal section of 23 bars (see Figure 2).
These numbers are highly significant because there is another sense

xrhi~hk

Sam wx PR O o WU € n el caczamale nen? e el o viic suit Jh IR Y
in wiicn oer

was Coin 1Pu51ug with numbers’ in the Ly 1 Suiic, anda this
has to do with its proportional relations: both the durational lengths
and the tempi of movements. There are various numerological clues in
the score, but the extent to which number symbolism, as well as other
kinds of cryptograms and enigmatic quotations, govern the structure of
the work, was first fully revealed by George Perle in 1977. Berg, it
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Figure 2. The proportions of the third
movement of Berg's Lyric suite are governed

| . R .
L - | = 1 -

4——————— 69 bars —————p-4— 23 bars —p-4¢———46 bars ———»

by Rerg’s ‘fateful’ number 23.

< 138 bars »

personal significance for him—he referred to it as his ‘fateful’ number.
If we look again at the ‘allegro misterioso’, we can see that its propor-

tions, in terms of numbers of bars, are governed by multiples of Z3.
This is no fluke. Movements 1 and 4 are both 69 bars long (3 X 23);
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23: movement 4, J = 69; movement 6,

As for the length and tempi of the other movements, they are all
multiples of 10: metronome marks of 100 or 150 and a second move-
ment that is 150 bars Jong. Note that the length of movement 5 (460 bars)
is a multiple of both 23 and 10. What is the significance of this 10? Some

detective wO rk by Der inchiding 2
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rg’s letter
discovery of a miniature score meticulously and colourfully annotated
by Berg, revealed that 10 was the fateful number of Mrs. Hanna Fuchs-
Robettin with whom, it transpires, Berg had become passionately

involved. The score is secretly dedicated to her in Berg’s own hand:

It has also, my Hanna, allowed me other freedoms! For example, that of

vy

secretly inserting our initials, HF and AB, into the music, and of relating every

movement and every section of every movement to our numbers, 10 and 23. I

have written these, and much that has other meanings, into the score for you
.. May it be a small monument to a great love.

Thus the intertwining of 10 and 23 has not only structural implications
for the composer but strongly extra-musical (extra-marital?) ones too. It

remains a fascinating personal example of composing with numbers.

Anton Webern

The late works of Anton Webern, Schoenberg’s other celebrated pupil,
are concise statements and show a highly developed understanding of
the possibilities of the twelve-note method, particularly in terms of
their concentrated motivic working and their exploration of symmetrical
structures. Canons abound. Yet the end results are not in any sense
mechanical or abstractly mathematical but poignantly expressive. As
one commentator has observed about Webern’s serial string quartet:
‘its “suitability for study”, as a compendium of Webern’s serial
technique in full maturity, should not blind us to its musical qualities’.

The twelve-note row with which Webern rnmhncpd his Concerto,

Op. 24 (1934), is given in Figure 3a. It is a marvellous example of
symmetry, even within the row itself. Each half of the row involves a
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mirror symmetry and the row can be further broken down into four
groups of three notes, each of which contains the intervals of a
semitone and a major third, and which represent, in microcosm, the
four different forms of the basic row—prime or original, retrograde
inversion, retrograde and inversion. Furthermore, the retrograde
inversion form of the complete row in transposition (a semitone)

— el elon n [ o T
it O1 the o e-note glU Pb e r'lguu: JU}

Figure 3c, the opening of the first movement, shows how this is
exploited in the actual music. Notice how Webern makes a rhythmic
feature of the three-note groups.

Thus, numbers again provide a context within which the composer

can work; they are in no sense the end result—that is, what the piece is
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c
was interpreted by some of the younger generation of avant-garde
composers after the Second World War. The works of Webern, not
Schoenberg, were viewed as the models for the future of music. Only
total organisation of music in all its aspects (pitch, duration, mode of
attack, dynamics, form) meant that the composer, in theory, was in

}
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cHAPTER 8 | Composing with numbers

from the past. Olivier Messiaen was one of the first to suggest the pos-
sibilities of total serialism in his Modes de valeurs et d’intensités for piano
of 1949, but it was his pupil, Pierre Boulez, who took these ideas to
their extreme and logical conclusion in his Structures for two pianos of

10':7 Karlheinz Stackhancen nd on the ather cide of ¢
P g L - [S2L LRV 2 T

NS VA u vindiauosil axxu, on tne 1iC

Q.
-t
=2
m

Milton Babbitt were similarly extending serial principles beyon
domain of pitch.

The very title of Boulez’s Structures gives away its central premise—
c

oncerned with building mrporrqrpd musical structures

P DRLRQE Mt latt @ TRt SR tules

nqmplv that it is

that stand on their own terms rather than being dependent on anything
outside of themselves. The architectural implications of the title were
intentional and exemplify a more general trend (and not just in music)
towards associating art with science, mathematics and architecture. The
development of the possibilities of electronics in music was just one rea-

son for this—and the concomitant scientific PYhInrqhnn of the proper-

ties of sound. Varése anticipated this in works with such titles as Density
21.5, lonisation and Hyperprism. Later composers made explicit use of
these ideas in works with such titles as Cage’s First construction (in metal),
Boulez’s Polyphonie X and Stockhausen’s Zeitmasse. All these works rep-
resented a desire on the part of the composers to move forward, to erad-

icate the past and memories of earlier music; the apparent nhuP tivi ry’

vvvvvvvv poss flals JALINVLIIS Laiilc il appartin 1

of number, mathematics and the mathematlcally based architecture of a
tigure like Le Corbusier provided a means to achieve this.

The structure of Boulez’s Structures is based entirely on the basic row
from Messiaen’s Mode de valeurs—see Figure 4a. Two number matrices
were derived from this to represent all 48 forms of the row which are

used once each in Structure Ina. Each mfrh class corresnonds to the same

integer throughout: B =1, D =2, A = 3, etc.

From these matrices a series was also derived for durations by
reading each integer as numbers of demi-semiquavers. For example, at
the very beginning Piano I plays the pitch classes of the original row,
but with the durations of the final inverted, retrograded row (12, 11, 9,
10, 3,...)—see Figure 4b.

Furthermore, each statement of the row was assigned a particular
dynamic and mode of attack determined by the matrices—Figure 4c
shows the row of 12 dynamics and 10 modes of attack. The selection of
dynamic and mode of attack is determined by reading diagonally across
the matrices: the P-matrix for Piano I, the I-matrix for Piano II. Even the
order in which the 48-note and 48-duration series are chosen is deter-
mined by the number matrices: for instance, the first twelve-note series
in Piano I are those of the P-matrix but in the order of the numbers of
the first row of the I-matrix (1, 7, 3, 10,...).
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CHAPTER 8 | Composing with numbers

Where does this leave the composer? What scope is there for him or
her, in Schoenberg’s words, to compose “as freely as before’? Not too
much, apparently. Though Boulez makes free choices regarding
register, tempo, metre, and even the use of rests, his hands were tied by

the sy is so highly over-determi
sounding almost completely random: the differences are not readily
discernible between Structure Ia and, say, Cage’s near-contemporary
Music of changes, where chance procedures of coin-tossing and use of

As an experiment in number made audible, Boulez’s Structures are
fascinating, but he was soon to admit that ‘composition and organisation

cannot be confused with fallino into a maniacal inanity, undreamt of hv

A0 DO LNt Wl Igl g A | Hgliiat A allt ainarealiiv o

Webern himself’. Whether or not Structures is maniacally inane is for
the individual listener to decide.

Peter Maxwell Davies

The English composer, Peter Maxwell Davies, began his composing life
as a follower of the thinking of Schoenberg and showed an early famili-
arity with serially derived techniques of composition. There is, as Paul
Griffiths has pointed out, a kinship between the work of Maxwell
Davies and Boulez of the mid-1950s ‘in matters of rhythmic style,
texture and serial handling’. Though their paths have subsequently
gone in very different ways, there is a striking similarity in their attitude
to number in generating musical material in some of their works. In
particular, procedures in those works of Maxwell Davies of the 1970s
which ‘process’ pitch and durational material through magic squares
are not that dissimilar from some of Boulez’s working in Structures.

Ave maris stella (1975) is one such example in which the Gregorian
chant ‘Ave Maris Stella’ is, in Maxwell Davies’s words, ‘ “projected”
through the magic square of the moon’. A mirror of whitening light
(1976-7) is another. The title, according to the composer, refers to the
alchemical process of purification or ‘whitening’, ‘by which a base
metal may be transformed into gold, and, by extension, to the purifica-
tion of the human soul’. The “agent’ of this transformation is the spirit
Mercury, represented here by the magic square of Mercury, and
through which is projected the plainchant Veni sancte spiritus. The
number 8, Davies tells us, ‘governs the whole structure’, and its source
is the 8 X 8 ‘Magic square of Mercury’ in Figure 5a, in which each row
and column and cach diagonal adds up to 260.

Figure 5b shows the way in which the plainchant is projected through
the magic square. An 8-note ‘summary’ was derived from the beginning of
the chant and consists of 8 different pitches, though it still maintains the
profile of the original. An 8 X 8 matrix was then constructed in which each

note of the summary was transposed, just like a tone row, to begin on each
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Music and mathematics

of its constituent notes, and each note was numbered consecutively from
1 to 64. The final stage was to map this matrix on to the magic square.
The composer then charted various courses through the matrix to

generate pxtch matenal from top to bottom, left to rlght from bottom
i hf‘ Fr di f) onally: in cr\irf)]e'

fially, i opjiy

Figure 5c shows how thlS achieved at the opening of the work—in
this case, top-bottom, left-right (C, A, B, F,D,D,...). Itisjust one way
in which notes were generated in this piece, one aspect of the various

Durational lengths can also be determined by the Mercury matrix—
Figure 5d shows one such instance. The pitches of the clarinet line were

OPnPrand hv starting at ‘c quare 47 (see Figure 5b) and wm-l(mor back-

wards and upwards:
47 [B*], 17 [F], 33 [E*], 31 [DY], 30 [E], . ..

The durations of the accompanying bassoon line use the same
numerical sequence from the magxc square but here all the numbers

nverted <o thatr thev 1§
A LA 2 (AIL 1

wurere N
WEere conver

ucing
them modulo 8 (for an explanation of modular arithmetic, see Chapter 9).
This new but related numerical array was then taken to represent
numbers of quaver beats and is stated in the opposite direction from the

pitch ‘row’:

clarinet ‘pitchrow’ 47 17 33 31 30 36 37 27 26 40

bassoon ‘duration row’

7 1 2
3 L A ) )

The bassoon’s pitches, incidentally, were generated by a left-right read-
a i the work, in

VAL X

Q
*h

ingo of the Mercurv matrix startin

the Mercury matr
the top-left corner.

Can any of this be heard? Maxwell Davies has great faith in his
listeners: these ‘sequences of pitches and rhythmic lengths . . . [are] easily
memorable once the “key” to the square has been found’, he claims. No
doubt he would argue that the logic” given to the various transforma-
tions by the magic square is, at the very least, subconsciously perceived.
[ have my doubts. What one hears is a piece of music, clearly structured
with a focal ‘key’ centre of C, and not just a mathematical game made
audible. However, the numbers were vital to the compositional process,
as they were a means of providing the composer with his working
material. To misappropriate Schoenberg, one has to follow the magic
square; but, nevertheless, one composes as before. As Maxwell Davies
himself has said in the context of his later Second symphony, magic
squares ‘are a gift to composers if used very simply as an architectural
module’.
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Figure 5. Peter Maxwell Davies, A mirror of whitening light.
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cHAPTER 8 | Composing with numbers

[annis Xenakis

Such a sentiment was also close to the heart of another composer
for whom an understanding of mathematics and architecture were

educated in Greece; ancient Greek culture—be it drama, architecture,
philosophy or mathematics—continued to have a profound influence
on his thought.

Xenakis’s early education was principally as an engineer, and when
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he moved to Paris in 1947 he not only studied with the composers
Honegger, Milhaud and Messiaen, but also met the architect Le
Corbusier with whom he was to collaborate on a number of important
projects. Their most celebrated undertaking was for the Philips
Pavilion (Figure 7) at the 1958 Brussels World Fair for which, in just a
few days, Xenakis sketched the basic structure using conoids and hyper-
bolic paraboloids. As Xenakis later observed:

I discovered on coming into contact with Le Corbusier that the problems of
architecture, as he formulated them, were the same as I encountered in music.

And elsewhere:

With Le Corbusier | discovered architecture; being an engineer I could do
calculations as well, so [ was doing both. This is quite rare in the domain of
architecture and music. Everything started coming together and I also asked
musical and philosophical questions.

It would seem, then, that for Xenakis music and architecture were
concerned with the same issues: in architecture his ideas were articu-
lated in space; in music they were articulated in time. Furthermore,
mathematical models underpinned the development of his ideas in
both realms.

His first acknowled

His f knowledg mposition, Metastasis (‘transformations’)

1, Metastasis (‘transformations
of 1953-4, clearly exemplifies these concerns. The structure of the
curved surfaces of the Philips Pavilion was generated by straight lines;
Metastasis had aiready demonstrated, as Xenakis put it, that it was ‘pos-
sible to produce ruled surfaces by drawing the glissandi as straight
lines’. Music and architecture here found an intimate connection, as we
can see if we compare Xenakis's graph plotting the paths of a section
of glissandi with the same passage in the score—see Figure 6.
Metastasis shows Xenakis exploring architecturally derived notions
of mass and ruled surface, and a concern to represent ‘sound events
made out of a large number of individual sounds [which] are not sep-
arately perceptible, ... [to] reunite them again. . .[so that] a new sound
is formed which may be perceived in its entirety’. In Metastasis one is
not aware of individual sounds but of a new mass of sounds and tim-

bres. The means by which he achieved this were derived from The mod-
ulor of Le Corbusier: pitches (based on twelve-note rows) were
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assigned a series of durations based on the Fibonacci sequence, along
with a range of timbres. The way in which this material was processed
became the form of the piece.

Xenakis subsequently developed these ideas in a much more
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computers to assist him in his pre-compositional calculations. He soon
became interested in probability theory as a way of handling mass
sound phenomena, and from this grew what he described as ‘large

) < )
>

elements is unpredictable but the shape of the whole can be deter-
mined. For example, Pithoprakta, the next work after Metastasis, drew

e composer claimed) on Maxwell-Boltzmann’s kinetic theory of
gases; Achorripsis employed Poisson’s law; and Duel and Stratégie used
game theory—each work employed two conductors who ‘compete’
with one another. More recently, Xenakis developed what he called
‘symbolic music’ which drew on principles of symbolic logic. Paul
Griffiths has observed that ‘Xenakis’s symbolic music has. .. the nature

first evident in

of a translation into sound of theorems of set theory’, fi
Herma for piano of 1960-1.

This may suggest that Xenakis’s music is completely abstract and
sterile. Not at all. His music, like the man, is all too human and he always
asserted the primacy of music over mathematics—music, he believed, is
never reducible to mathematics, even though they have many elements
in common. Xenakis was a philosopher who expressed his ideas
primarily in music, but who was constantly searchmg for profound
fundamental principles that underlie all thought. As another commentator
has put it, ‘he gives us something only an artist can give—a dynamic
picture of the universe informed by the science of today’.

Although Xenakis's use of a variety of mathematical models may have
been undertaken in a more consistent and thoroughgoing manner than
almost any other composer, it does not make his music any less exciting,
challenging, creative—or even valid—than music composed in a different
age or by different means. Mathematics is a means to an end, not the end
in itself. Composers today are as aware as have been thinkers of the past
that music is inherently mathematical, but this does not mean to say that
it is mathematics. Composing with numbers is not an admission of
compositional failure, a substitute for ‘inspiration’ or ‘musicality’,
whatever those concepts may mean. Composers have composed with
numbers as one way of generating new musical ideas, as a means of
stimulating their creativity, in answer to the fundamental questions posed
for all artists of the last century. In Xenakis’s words, this represents:
the effort to make “art” while “geometrizing”, that is, by giving it a reasoned
support less perishable than the impulse of the moment, and hence more

serious, more worthy of the fierce fight which the human intelligence wages
in all the other domains.



Part IV

The composer speaks
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CHAPTER O

Microtones and projective planes

Carlton Gamer and Robin Wilson

An example of 31-tone music: the beginning
of Carlton Gamer’s Organum, from Canto
LXXXI (Ezra Pound).

Although most music is composed in the 12-tone equal-tempered system,
attention has also been paid to the systems obtained by dividing the octave
into other numbers of divisions. For certain of these systems, there is an
unexpected connection between the compositional operation of musical

inversion and the idea of ‘duality’ for certain geometrical objects called finite
projective planes.

For hundreds of years mathematicians and musicians have been
intrigued by the musical systems obtained when an octave is divided up,
not into the usual twelve tones with which we are all familiar, but into
a smaller or larger number of tones. Certain of these systems, such as
the 19-tone, 31-tone and 53-tone equal-tempered systems, have been
much investigated, since they give rise to tunings that more closely
approximate particular intervals in the harmonic series (‘just’ tunings)
than does the 12-tone equally tempered system; a table comparing
these tunings is given below.

interval just ratios 12-tone 19-tone 31-tone 53-tone
octave 2.000 2.000 2.000 2.000 2.000
perfect fifth 1.500 1.498 1.494 1.496 1.500
perfect fourth 1.333 1.335 1.339 1.337 1.333
major third 1.250 1.260 1.245 1.251 1.249
minor third 1.200 1.189 1.200 1.196 1.201

The 19-tone and 31-tone equally tempered systems date from the six-
teenth century and were studied by such mathematicians as Marin
Mersenne, who designed a 3i-tone keyboard (see Chapter 1), and
Christiaan Huygens, who used logarithms to perform the necessary
numerical calculations. The 53-tone system was studied by Boethius,
Mersenne and others, and a version of it was confirmed as the official
musical system in China in 1713, although a method of equal tempera-
ment had already been introduced there by Prince Chu Tsai-yii in 1584,
fifty years before the first writings on the subject in Europe. indeed, it
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has been claimed that the idea of equal temperament was familiar to
the Chinese by the year 1000.

Systems with fewer than twelve tones are also of interest, although
most of these are not equally tempered. For example, 7-tone systems and

ther system; imilar nature have been used in the music of India and
Thailand, and by the gamelan orchestras of Indonesia. Similarly, the
various modes (Dorian, Phrygian, etc.) were much employed in medieval
and Renaissance music, from which our own major scale derives.
with ‘microtonal’ systems. This interest may be due, at least partly, to
the desire in the various arts to ‘return to fundamentals’, as exemplified
in the early twentieth century by the serialism of Schoenberg’s ‘twelve-
tone row’ (see Chapter 8), the paintings of Mondrian, the sculptures of
Brancusi, and the contributions to the foundations of mathematics by
Russell and Whitehead. The artistic desire to return to fundamentals
has been coupled with a search for new technical and expressive
resources, and significant aspects of such resources—the various dis-
coveries feeding into so-called ‘geometrical abstract art’, the science of
digital imaging, the shaping of metals in recent architecture—have
been informed in one way or another by mathematics. In consequence,
the study of atonal and microtonal music has become increasingly
mathematical, involving set theory, permutation groups and, recently,
cyclic designs.

Such studies have been given im .
produced music. This has made it possxble to perform music in systems
other than the 12-tone system with far greater accuracy of intonation
than previously. In view of this, it seems possible that attention will
move away from ‘traditional’ microtonal systems, such as the 19-tone
and 53-tone systems, and that other systems will figure more promi-
nently in the future. In this chapter our interest lies in equal-tempered
systems with n tones, where n is a number of the form le2 —k+1, for
some integer k; as we shall see, these numbers arise naturally out of
geometrical considerations. Included in this list are the 7-tone and
31-tone systems (corresponding to k = 3 and k = 6), as well as the less
familiar 13-tone and 21-tone systems (corresponding to k = 4 and k = 5);
in all these systems we employ cyclic designs and finite projective
planes, concepts that we introduce later. Equally tempered systems

with 19 and 53 tones do not fit directly into this classification.

Consider the piano keyboard opposite, depicting the twelve notes of
the octave. In order that music in any key can be played as nearly in tune
as possible, the tuning is equally tempered, so that (for example) D* =

nt —~ "

=g, and B*= A. As we saw in Lnapter 1, this tunmg is effected Dy

150



CHAPTER 9 | Microtones and projective planes

o 1 2 3 4 5 6 7 8 9 10 11 0

ClD‘E F[GIA‘B B

making the ratio of the frequencies of any two consecutive notes equal
to 212 (= 1.05946 . . .); note that an octave has frequency ratio 2.

in what follows we are concerned exclusively with pitch classes, rather
than with actual pitches; this means that all notes with the same letter
name (for example, all G's) are to be regarded as the same. Under this
assumption each note can be regarded as an integer modulo 12. and the
intervals between notes are obtained by subtraction modulo 12; modular
arithmetic is explained in the box.

Modular arithmetic

Two numbers a and b are congruent modulo n, written a = b (modulo
n), if a —b is divisible by n; for example, 17 = 5 (modulo 12). The
different integers modulo n are usually takentobe 0, 1, 2,...,n— 1.

Addition or subtraction of integers modulo n is effected by adding or
subtracting in the usual way and then determining the remainder
on division by n; for example, 8 +9 = 5 (modulo 12) and 5—9 = 8
(modulo 12).

Arbitrarily choosing C = 0, we obtain the following correspondence:
Cc ¢ D D' E F FF G G' A A' B
0 1 2 3 4 5 6 7 8 9 10 11
We refer to these notes (numbers) as tones, and to this equally tempered
system as ETS 12.

More generally, we define the equally tempered system ETS n to be the
system that arises when the octave is divided into n tones in such a way
that the ratio of any two successive frequencies is 2'/". In such a system
the n tones correspond to the integers 0, 1,..., n — 1 (modulo n), and
the intervals between tones are obtained by subtraction modulo n.

In all these systems we can define the musical operation of transposi-
tion. Given any set S of tones in ETS n we may apply the transposition
T}, defined by

Ti(x) = x + k (modulo n), for all tones x in S;

we can think of transposition as playing the same tune but starting on a
different note. For example, if n = 12 and S is the C major scale, we have

Cmajor C D E F G A B C
S: 0 2 4 5 7 9 11 0

I5I
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Applying the transposition T,, we have
Emajor: E F' G' A B C' D' E
T(S): 4 6 8 9 11 1 3 4

(Beethoven used this particular transposition for the second theme in
the first movement of his Waldstein Sonata, Op. 53.)

We will be concerned with the number of tones in common between
such scales. In this case, note that S and T,(S) have exactly three tones
(4, 9 and 11) in common. These three tones arise from the existence of
three intervals of size 4 (0-4, 5-9 and 7-11) in the original scale. More
generally, there is an elementary but useful result, first formulated by
the composer Milton Babbitt and now known to music theorists as
Babbitt’s theorem:

Given any set of tones, the multiplicity of occurrence of a given interval in
the set determines the number of tones in common between that set and its
transpositions by that interval.

Expressed symbolically, this says that if S is any set of tones in ETS n,
then the number of elements common to S and Ty(S) is equal to the
number of pairs a, b in S for which a — b = k (modulo n).

In a similar way, we can investigate the musical operation of inver-
sion. Given any set S of tones in ETS n we may apply the inversion I,
defined by

I(x) = n — x (modulo n), for all tones x in S;

we can think of inversion as reflecting the tones in S vertically in the line
C (= 0). For example, if n = 12, then the inversion of § = {2, 7, 11} is

{12—2,12—7,12— 11} = {10, 5, 1},

1
¥ 5
C=0 - i 1
7 ’
2

as shown below.
0
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Difference sets

Consider the following extract from the last movement of Béla Bartok’s
Fourth String Quartet:

O
S 3 N
B [ 4 (7] L AN
4 —< 15 o 2w L
3] ¢ 1@ v ted @

RN , ~—— W\ ,

The set of tones involved in this extract is {1, 3, 6, 7}. This four-tone
set has been used by several composers (for example, in Schoenberg’s
Opus 33a, Webern's Opus 5 and Elliott Carter’s First String Quartet and
Double Concerto), and is called an all-interval tetrad since every possible
interval occurs in it; for example, intervals of size 4, 6 and 10 occur
between the pairs 3 and 7, 1 and 7, and 3 and 1, respectively. In fact, this
tetrad gives rise to each interval exactly once, with the single exception
of the tritone interval of size 6 which can be written in two ways, as
1—7or7— 1 (modulo 12).

It would be even more satisfactory if every possible interval, without
exception, were to occur just once. This leads us to investigate sets of
tones in an equally tempered system that have this property. With this in
mind, we introduce the idea of a difference set (modulo n) to be a set of
distinct integers cy, ..., ¢, (modulo n) for which the differences c¢; — ¢
(for i # j) include each non-zero integer (modulo n) exactly once; for
example:

e {0, 1, 3} is a difference set (modulo 7), since the differences are
1=1—-0,2=3—-1,3=3—-0,4=0—3,5=1—3and6=0—1;
{0, 4, 6} is also a difference set (modulo 7);

{1, 3, 6, 7} is a diff

on

not a difference set (modulo 12) because the ‘tritone difference’
occurs twice;

e {0, 1, 4,6, 13, 21} and {0, 10, 18, 25, 27, 30} are both difference sets
(modulo 31).

Cyclic designs

We shall also need the concept of a cyclic design. Given positive integers
n and k, with k <n, a cyclic design with these parameters is an arrange-
ment of n numbers into n blocks of size k, in such a way that any two
numbers appear together in exactly one block, and that the numbers in
each successive block are obtained from those of the previous one by
adding 1 (modulo n). For example, a cyclic design with parameters
n=13 and k =4 is as follows, with the blocks written vertically; you can

PPN .

check that any pair of numbers (such as 6 and 10) appear together in exactly
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one block—in this case, block (4)—and that the numbers in each successive
block are obtained from those of the previous one by adding 1 (modulo 12).
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W @ @@ 6 6 @ ® © 1) ay 12 (3
1 2 3 4 5 6 7 8 9 10 11 12 0
3 4 S 6 7 8 ] 10 11 12 0 1 2
6 7 8 9 10 11 12 0 1 2 3 4 5
7 8 9 10 11 12 0 1 2 3 4 5 6

design can be thought of as the tones in the equally tempered system
ETS 13, and the successive blocks can be thought of as tetrads that are

obtained from earlier ones by transposition. Note that any two tones in
ETS 13 appear together in just one tetrad—for example, the tones 6 and
10 appear together in tetrad (4). Note also that 4 X 3, the number of
possible differences between numbers in the difference set, is equal to
12, the number of non-zero integers modulo 12.

More generally, we can construct such cyclic designs whenever we
have a difference set. For, if S is a difference set (modulo n), then S gives
rise to a cyclic design whose first block is § and whose successive blocks
are obtained by adding 1 (modulo n) to each element of the preceding
block. For example, the difference set {1, 3, 6, 7} (modulo 13) gives rise
to the cyclic design above.

It follows from the definition of a difference set (modulo n) th
k(k — 1), the number of possible differences between two numbers in
the difference set, must be equal to n — 1, the number of non-zero
integers modulo n. Thus, difference sets (modulo n) can occur only

when k(k — 1) = n — 1, for some integer k—that is, n = k> — k + 1.

Finite projective planes

A finite projective plane is a geometrical system consisting of a finite
number of points and lines, with the properties that any two points lie
on just one line, and any two lines pass through just one point. In such
a system it can be shown that each line contains exactly k points and

that each point lies on exa _Iv k lines, for some integer k, and that in

total there must be exactly k* — k + 1 points and k* — k + 1 lines. For
example, the following finite projective plane corresponding to k =3
has exactly 3 points lying on each line, and exactly 3 lines passing
through each point. Since 3> —3 + 1 =7, there are exactly 7 points
(0,1, 2,3,4,5, 6)and 7 lines ((0), (1), (2), (3), (4), (5), (6)) in this system;

the reason for labelling the lines in this way will become apparent soon.
It is often called the Fano plane, since it was introduced by the Italian
geometer Gino Fano, in 1890; notice that one of the lines has to be
drawn curved, but this does not invalidate the concept.

More complicated is the finite projective plane corresponding to k = 4;
since 4 — 4 + 1 = 13, this has 13 points and 13 lines, with 4 points lying

on each line and 4 lines passing through each point.
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Fano plane. 13-point projective plane.

We have seen that any difference set in ETS n leads to a cyclic design
with n=k* — k + 1 tones, in which any two tones appear together just
once. For many values of k, such a cyclic design gives rise to a finite pro-
jective plane. We now look at a difference set in each of the systems ETS
7, ETS 13 and ETS 31, and obtain the corresponding cyclic designs and

fiamitn smsmnineticn wmlamna T asrncn b
Ifute projoecuive  plancs. uic

~ e alehnaigl A2 — 22 7 L
riowcevel, dlLllUuéll @40 — /7 /U1,

equally-tempered system ETS 43 cannot be studied in this way, since it
can be proved that there exists no projective plane with n = 43.

ETS 7 Fano plane: difference set = the triad {0, 1, 3}

© @O @ @ @& 6 (6)
0 1 2 3 4 5 6

ETS 13 13-point projective plane: difference set = the tetrad {1, 3, 6, 7}

© @O @ @ @ ®) (6 @ ® ®) (10) (an (12)

1 2 3 4 s 6 7 8 9 10 1 12 0

3 4 5 6 8 9 10 11 12 0 1 2

6 7 8 o 10 11 12 0 1 2 3 4 5

7 8 9 10 11 12 0 1 2 3 4 5 6

ETS 31 31-point projective plane: difference set = the hexad {0, 1, 4, 6, 13, 21}

© O @ @& @ ) (6 @) (8 ® (10 29  (30)
0o 1 2 3 4 5 6 7 8 9 10 29 30
1 2 3 4 s 6 7 9 10 11 30 0

4 s 6 7 8 9 10 11 12 13 14 2 3

6 7 8 9 10 11 12 13 14 15 16 4 5

13 14 15 16 17 18 19 20 21 22 23 11 12
21 22 23 24 25 26 27 28 29 30 0 19 20
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Duality

One of the most important ideas in geometry is that of duality, in

which we can obtain a new system by interchanging the roles of points

plane obtained by interchanging the points and lines; thus, if p is a point

and [ is a line of the original projective plane, then lis a point and p is a
line of the dual plane. Lines through the point p of the original plane then
become points lying on the line p in the dual plane, and points lying on the

line I in the original plane become lines passing through the point i in the
dual plane. For example, the dual plane of the Fano plane is as follows;
note that the lines (0), (4), (6) passing through the point 0 in the origi-
nal plane become the points (0), (4), (6) lying on the line 0 in the dual
plane, and similarly for the other points and lines.

0
A (R)
(0)
iy - (4) 0— 3
(§)~ L,
1 Wy T @ 4) B
3 4
|, ¥ ¢ | e
3 N 6 ;(5) 4 (6) t ) ‘5 3
Fano plane. Dual of Fano plane.

We now return to our finite projective planes for the systems ETS 7,
ETS 13 and ETS 31, and find their dual planes. For the system ETS 7, the
dual plane also turns out to be a cyclic design, and the numbers 0, 4, 6
appearing in its first block {(0), (4), (6)} can also be obtained by sub-

PPROT S PO N S, RPN S U 1 | PN

tracting from 7 the numbers in the Ougurdl difference set {G, i, 3}. ror
the system ETS 13, the dual plane is again a cyclic design, and the num-
bers 6, 7, 10 and 12 appearing in its first block {(6), (7), (10), (12)} can
be obtained by subtracting from 13 the numbers in the original differ-
ence set {1, 3, 6, 7}. Similarly, for the system ETS 31, the dual plane is a

cyclic design and its first block is obtained by subtracting the numbers

SV S : ~1 1:00. .
111 0c Origindl Aauicrc

men opa L Ll [ H TN AN RPN g ) TP s FE |
1CC HCL 1TOIT iupelr n Ol poli. 1HC dudl
plane for ETS 31 is of musical interest, since the first four notes of each
hexachord (for example, (0), (10), (18), (25)) form a perfect dominant

7th chord, as shown on the following 31-tone keyboard.

0 1234 5 6789 10 1112 13 14151617 18 19202122 23 24252627 28 2930

Il Il
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ETS 7 Fano plane:

(0) 1 @ (O () (6)
0 1 2 3 4 5 6
1 z 3 4 5 6 o
3 4 5 6 0 1 2
Dual plane:
0 1 2 3 4 5 6
© O @ & @ ) (6
(4) 6) (6 © (1) @) €)
(6) © (M @ 3 4 )
ETS 13 Finite projective plane:
(0) @ @ 3 (4) ) (6) @ ® ® (10 (a1 - (12
1 z 3 4 5 6 7 8 9 10 11 12 0
3 4 s 6 7 8 9 10 11 12 0 1 2
6 7 8 9 10 11 12 0 1 2 3 4 5
Dual plane:
0 1 2 3 4 5 6 7 8 9 10 11 12
© @ @® ® 9 (1 - (12) © M @ € “ )
@ ® O (10) (1) 1z O n @ () (4) ) (6)
(10 a1y Q12 © @ 2 €) ORI (6) @ ® ©)
1z © (@ @ @ 4 &) © O 8) © Q) an
ETS 31 Finite projective plane:
© 1 @ G @ ) (6) @ ® ® 0 29 (30
0 1 2 3 4 5 6 7 8 9 10 29 30
1 2 3 4 5 6 7 8 9 10 11 30 0
4 5 6 7 8 9 10 112 13 14 2 3
13 14 15 16 17 18 19 20 21 22 23 11 12
Dual plane:
0 1 2 3 4 5 6 7 8 9 10 29 30
© @O @ G @ ) (6) @ ® ® a0 @29 G0
(1o an az 13 14 (1s) (e (7 (18 (19  (20) (8 ®
18 (19 (0 @) (@2 (23 @9 (25 (26 (27 (28 (16) (17
25) (26) @27) 28) (29) (30) © 1) 2 @) 4 (23) (24)
@7 @8 (29 6o (O &y 2) G @ ®) (6) 25)  (26)
G0 O (D @ 3 ) ) © @ (8) ® (28)  (29)
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Inversion

In each of these examples the blocks of the dual plane can be obtained

by subtracting from n (the number of tones) the numbers in the ori-

Up to now, this direct link between the concepts of geometrical duality

and musical inversion—that the dual plane corresponds precisely to inver-
sion of the tones in the original difference set—has been largely unnoticed
by musicians; for a proof of this result, see the following box. It is our
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hope that musicians will find it worthwhile to concentrate increasingly
on equally tempered systems ETS n, where n=k*—k + 1 for some
integer k, and that they will find the concept of duality to be fruitful in
both musical analysis and composition.

Theorem. The dual plane corresponds precisely to
inversion of the original difference set

Proof. Let the original difference set (block (0)) be {c,, . . We
must show that the dual plane is a cyclic design whose f
isn—c,...,n— ¢

Note first that {n — ¢, ..., n — ¢} is a difference set, since if s =
¢;— ¢, thens = (n —¢) — (n — ), and so there is a one-one corre-
spondence between the differences formed by the two sets. Note
also that tone 0 occurs in blocks n —¢,,..., n — ¢, and so these
numbers form the first block of the dual plane. Similarly, each
other tone t occurs in blocks n —¢; + t,..., n—¢, +t, and so
these numbers form a block of the dual plane. It follows that the
dual plane is a cyclic design whose first blockisn —¢,,..., n —¢.

Fanovar: Variations on a Fano plane

We conclude by describing the composition Fanovar by the first author.
As its title indicates, the piece is governed by the structure of the
Fano plane. It is composed for seven instruments and consists of seven
sections, or variations, of which the first two are presented here. The
seven instruments are grouped into seven trios in accordance with the
disposition of points and lines in the Fano plane, as follows.

‘ » ‘Violin’
Trumpet ‘Oboe’

‘Cello’ M “Trombone’

‘Clarinet’
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Each of the seven instruments is to be tuned to play in the equally
tempered system ETS 7, and for this reason, the most feasible
realization of the score entails the use of electronically synthesized
instruments. The quotation marks around the name of each instru-

ment in the score are

timbre that approximates that of the instrument shown. Furthermore,

because of the temperament employed, the lines and spaces in the

staves of the score do not denote the scale degrees of the traditional
R i : ; 3%

degrees of ETS 7 with pitch classes C=0,D=1,E=2,F=3, G=4,

A=5and B=6.

The melodic content of the piece is governed by a different seven-
note diagram, in which each point represents a pitch name, such as C.
The diagram for the first variation (see page 160) is shown below. Note
that the instrumental triad of ‘cello’-‘trombone’—"clarinet’ plays the
pitch classes C, D, G that appear in the triangle on the left, while the

G E

The second variation (see page 161) follows similar instrumenta-
tional and melodic principles, with the diagram re-lettered as shown
below; for example, the instrumental triad of ‘flute’-clarinet’-'violin’
plays the pitch classes G, B, D that appear in the triangle on the left.

G A

159



Fanovar

ETS 7  Variation 1
A Leisurely
£
Fluee' Oy = = —= —
o
— /—’—_\
! =
3 -
. , o] - T — — —T— }'
Oboe' | e ————= et
o >
mp ———— T
- s
‘Clarinet’ 2ot = = —T 1 - £
i a DAY T T
3] #v [ Jm—— =
o
A ‘con sord (cup)’ [— P Cay
Trumpet' Qi O e L_ o - [ T i y 2 y 2 f 7 - _ -
v L RO W - O3 - - —t
) i’ = i '
mp
‘con sord. (Cup)’
] 1
.. T 1 4
Trombonc' 4 FEFEqE = = e *
- I
4
O
Violm' § & - -
oJ
‘con sord. . .
—23— senza sord
- frem, ord —a—— INl & -
” » e 1 i & H
el 6 ESE e S EES S
. -
— —_
P =2 2/

" } ] i 4
N . L 1 >y ] - 1 T 1 1 1 )Y —
00 et —F g 2 e o
) + ———
>— /r'i fe)
r———— 3 \1
'Cl! T v} 7 =
" - 1 Py 1 L
o o —+— —+H— — —
’ 3_3 3 3 1+ L
fo) N
;A 15 T T
Tet'  Hoam—p - + —F T 1!
§V I o~ e - ' ' ¥4
J T et &
T —— —_—
Ton'  EOF - -
=2
‘Vin' i -
(3}
— 3 o, ~
‘przz* . A = arco’ ‘2_/-—-\_,1
‘Cel :A I é‘ Fj igt & T é fx > o =
i T - i{‘x’ 5 ] = t
—4 b w
- e ———
— T T 3

First variation of Fanovar.
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CHAPTER 10

Composing with fractals

... RobertSherawJohnson .~~~

An iterative formula can be used to generate two-dimensional patterns on
a plane. A computer program is described which generates musical patterns

using the same principles leading to a completed composition.

A glance through the illustrations in The science of fractal images edited
by Peitgen and Saupe, or The beauty of fractals by Peitgen and Richter is
sufficient to suggest that it is possible to create unusual and interesting
patterns, and even landscape and floral pictures, by computer genera-
tion. These works are concerned principally with the visual application
of fractals, music receiving only a brief mention in the former book.
One is tempted to speculate, however, that if meaningful visnal
patterns can be created by fractal generation, then it should also be
possible to create aural ones. This chapter is the resuit of such an invest-
igation using one particular type of fractal generation.

Of the various fractal sets described in the above literature and else-
where, the one that seems to have caught the popular imagination is
the Mandelbrot set, shown on the left. It has been the subject of a num-
ber of computer programs, designed to create the visual image of this
set on the screen, largely because of the large variety of detail that
appears when one zooms in on specific parts of the ‘picture’. Some use
has been made by others of the Mandelbrot set to generate music, but
none of the results that have come to the knowledge of the author has

seemed narri_ulquy impressive. Others have used the concepts of com-

““““ - r o e I S TeTEEE It

position derived from chaos theory and fractals—for example, the self-
similarity of nesting one musical phrase within itself, each note of the
The Mandelbrot set. sequence generating the sequence itself at different pitches.

The method with which we are concerned here, however, is not
the Mandelbrot set, but a chaotic dynamical system such as described
in Peitgen and Saupe’s book. The acrual iterative formula employed
originated with Martin Bell of Aston University, and appeared in
A. K. Dewdney’s mathematics column in Scientific American in 1986.
It was designed to create interesting and symmetrical patterns on

Robert Sherlaw Johnson. the two-dimensional computer screen coordinatized by two variables
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if x is positive, —1 if x is negative, and 0 if x is zero; a, b and ¢ are any
real number constants. The initial values for the variables x and y are
usually 0, but can be chosen to be any real numbers. The formula on
he rivht-hand side of eact i< calculated | } assiored
the variable on the left: these new values are then substituted into the
right-hand side and new values for x and y are calculated, and so on.

The result is a string of real numbers which are then converted to
points on the computer screen, so building up a pattern over a period of
time. Using this process as the basis, a computer program was devised
(written in Modula-2) on the Atari ST computer to convert the variables
to sound, while still retaining the plot facility.

Unlike the flat surface of the screen, music is a multi-dimensional
environment, these dimensions consisting of pitch, duration, the time
interval between successive sounds, timbre, loudness, tempo, and so
on. The most obvious assignment of the x- and y-values would be pitch
and the time interval between successive sounds (rhythm), but
although early experiments proved to be promising as regards pitch,
they were not so as regards rhythm, because of the different way in
which rhythmic patterns are built up. A melodic pattern can consist of
a large number of different pitches but a smaller number of different
durations, which have to form some kind of metrical pattern (although
this may be quite complex), in order to make rhythmic sense. In
addition, rhythm is not only a question of durational patterns, but also
of accentual ones. Initially it was decided, therefore, to work on con-
stant streams of pitches and to assign the y-values to loudness. As it
happened, a sense of rhythm emerged through the interaction of
accented (louder) sounds with pitch. The pitch information is distrib-
uted among eight channels of a synthesizer (as described below), so
that selection of one or two channels can also create rhythmic patterns
of different durations.

Translating real numbers into sound

Real numbers could be translated into pitch in a variety of ways, but the
most convenient, using a computer with a MIDI output port, was to
drive a synthesizer capable of receiving MIDI information. As MIDI
devices recognize integers and not real numbers, the x- and y-values had
to be scaled to be within the acceptable range for pitches and loudness
(0 to 127). It was not desirable that the whole pitch-range should be

used all the time, so the program was designed to allow the user to
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decide the range to be used in any given instance. Initially, then, the user
chooses real numbers that represent an index for range of pitch and one
for range of dynamics, and an integer representing tempo. All these

values can be changed in real time while the program is running.
T

o I"D’)I
(representing no variation) and vary upwards in steps of 0.1. The precise
effect of any given index on pitch would depend on the spread of x-values
generated, and would need to be adjusted by trial and error in any given
One of the major problems was how to drive the eight MIDI chan-
nels available on the synthesizer, and how to assign “voices’ (timbres) to

them. The latter nrnhlpm was am‘nmnhchpd hv trial and error, on the

basis of providing a mixture of percussive and sustained sounds in order
to achieve contrast. The selection of channel for any given pitch genera-
ted was built into the computer program.

At this point it should be noted that all these parameters: pitch and
dynamic range, tempo and channel selection, could have been brought

under fractal control hv exten rhnov the formula to include more than

two variables, or by further calculations from the formula involving
more constants. For musical reasons, rapid changes of these parameters
is not desirable, so that (for the present) they were left under user control.
Selection of channel was tried using the y-values of the formula, as well
as by a three-dimensional extension, but the rapid change of timbres

involved tended to produce a monotony because all eight channels were
equally favoured continually. The method eventually implemented was
to assign ranges of values of y (rounded to four decimal places) to each
channel. Although these ranges can also be decided by the user, the

program provides default settings, as shown in the following table:

channel: 1 2 3 4 5 6 7 8
values of ]y |: 0-1.9999 2-3,9999 4-59999 6-6.9999 7—7.9999 8-8.9999 9-9.9999 10 or over
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y tend to be in the lower ranges, which means that values above 10 a
not particularly frequent; this results in an overall balance between the
eight channels.

In some cases, there is only a gradual expansion of values of y around
0, which gives rise to a sense of ‘orchestration’ in so far as the higher
nuInUcrcu (,Ildrll]t:lb are lntrouuu:u progre Cly in UlIlCr cases \ll’lLlUU‘
ing the sequence for Fractal in A flat), there are subsequent contractions
in the selection of channels, as well as an initial expansion, providing
even greater variety in the range of timbres. All these ranges can be
altered at the start to accommodate different spreads of the y-value.
This can even be taken to the extreme case of excluding certain
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channels by setting abnormally high ranges for the upper ones. For
exampile, the program asks for upper limits of the range of y-values for
each channel: settings of 0, 2, 4, 4, 6, 8, 1000 will silence channels 1
(range 0 to 0), 4 (range 4 to 4) and 8, except in the unlikely event of a

value of y appearing oreater than 1000: 1000 hmno the nupper limit of

B MR Sppeutitis pt YRy Es REARLL SV, AVVY R YT e mit
channel 7 is automatically the lower limit of channel 8.

So far, each pitch is sustained until silenced by the next one, so that
some means of allowing simuitaneity of sound had to be devised. This

tieved-by-choosi ] ot .
duration that a sound can have. This constant is divided into the note’s
MIDI-integer and the remainder assigned to a counter which is decre-
mented on each subsequent generation of x and y: the note is stopped
when the counter reaches 0. There is one modifying factor that results
from the way in which the synthesizer handles MIDI information:
when another note is assigned to the same channel, the previous note
is cut short, even if 0 has not been reached on the counter. This means
that, although initially each note will have the same potential duration,
in some cases it may not reach its full length, owing to the arrival of a
new note on the same channel.

One respect in which a musical interpretation of the formuia differs
radically from a visual one is the ability to create different patterns by
selecting only alternate values of x and y, or every third value, and
so on. As the visual pattern is built up on the screen, one sees the
accumulation of points created by all the values generated up to that
particular moment. The longer the generation takes place, the more
interesting and complex the pattern becomes. Music is not perceived in
this way. One hears patterns that occur at the moment of listening, and
one may perceive that these relate to something that happened earlier,
or that they are different. For visual realization it is only the whole accu-
mulation of values that gives rise to a sensible pattern, whereas in the
case of music the whole is not perceived simultaneously and only local-
ized patterns make sense. It is easy to perceive, therefore, why rejecting
particular generations from the stream can create radically different
musical patterns, whereas it makes no difference to the cumulative
effect of the visual pattern, except to make it sparser in appearance.
Example 1 opposite illustrates this: in (a) all the values are converted to

‘QQ pitches, whereas in (b) every third value is converted; although only

Q Q fragments, the difference of melodic behaviour can easily be seen.
It is a characteristic of this particular iterative formula that, for most
/7%) %\ low-value constants, values of x and y remain within a reasonable range
for at least the first few thousand generations. The screen-patterns gen-
erated show a clear ordering because the dots tend to cluster in certain
areas, leaving other areas blank. In an extreme case (a = 8,b =4, ¢ =0),
two interweaving lines are generated, as shown on the left. These lines

two interweaving lines
(a=8,b=4,c=0) are not caused by a single row of dots, but by narrow clusters of dots,
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CHAPTER 10 | Composing with fractals

White notes—tails up: channel 1
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CONSTANTS a=3 b=2 c=1
White notes—tails down: channel 3
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so that an exact placing o u
can be said is that they are attracted to
attractor.

In most cases, dots tend to be attracted to particular areas, rather
than form in narrow lines, and it is largely this feature that allows such

sequences to be recognised as patterns, whether visual or musical.

Composing with the formula

A variety of patterns can be generated involving recognizable repeti-
tions and transformations, but the raw sequences from any particular
constants are too uninteresting in the long run without introducing the
human element in the form of the composer. The question of how

racece nf genaratinn i
ULLos ULl gliitiaulUlind

3

>
w
o]
ot

rh ar 'S
iU a o wnJ

an easy one to answer, as in an extreme case it would be possible to cut
and paste different sequences to the extent that the fractal generation
element becomes degraded. Imagine a hypothetical case where a
composition is assembled from fragments of sequences involving
different sets of constants, each fragment involving perhaps no more

nd A, It roild he aronied i
z s 1L Lo AN L/ ulsu\-“ 11

that the fractal element has been broken up to the extent that the
resulting composition could not be fairly called ‘fractal’. It is not easy to
see what the allowable extent of interface from the human composer
should be, but the composition now to be described perhaps provides
some pointers.

Fractal in A flat

During the process of experimenting with different constants and
other parameters, one particular combination displayed markedly tonal
characteristics as well as producing other usable motivic ideas. The
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three constants used for the formula werea =1, b=0.1 and ¢ = 1, and
the index for pitch spread was 2. This latter number is critical, in that
any variation destroys the sense of A flat tonality that arises from the
predominance of the major triad in the opening sequence, as illustrated

Al W i Dargananls 2
Ci1OW 11 L. pic 4.

-~

Tails up: channel I; tails down: channel 2

3 times 16 times*
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Example 2.
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* Channel 2 moves from the C to the second E flat after the eighth time.

The index for the dynamic range is less critical, provided that it is not
too large to silence the notes at the lower end of the dynamic scale. The
integer representing tempo has to vary with the computer running the
program The ST on whxch the program was initially developed, and on

larger the index, the slower the tempo). On the Atari TT, however, an
index of around 600 is needed to generate an approximately similar
tempo. Other crucial parameters are an index of 16 for the maximum
duration of pitches, and 2 for the gap value. The choice of 16 ensures a
reasonable variation of long and short notes, and the gap value of

to pitch.

An interesting characteristic of the basic sequence is the way in
which a distinct musical shape develops. For the channel selection, the
above default settings were used. After a prolonged ‘duet’ involving the
first two channels, the remaining channels quickly enter, giving a sense

>

of development in the music. After a while, the ‘duet’ returns—more

prolonged this time—followed by the rapid re-entry of the other
channels. This creates a binary structure A—-B-A-B in the music—the

following diagram shows the shape.

Channels 1 &2 Channels 1 & 2 /
All channels All channels

N N

Channel 3 on its own also presented some interesting features, as
shown below in Example 3. It is not involved in the initial ‘duet’ and
starts on generation 828. A natural musical development was evident
from this channel, involving repetition, transformation and contrast.

Perhaps the most surprising feature was the return of the opening

motif (a) at the end of the sequence, creating once again a sense of
musical for
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The composition Fractal in A flat was constructed in the following
way. Five minutes of the sequence derived from the constants a =1,
b=10.1 and ¢=1 were taken as the ‘base’ sequence in Example 2.
Channel 3 alone was directed to a flute voice on the synthesizer
(Example 3), and part of it was superimposed on the first ‘duet’ of the
base sequence, and the whole of it at a later stage. Other sequences
were also extracted in the same way for superimposition, as follows.

Base seq. (g= 2] slowing up.,,

Flute (channel 3)

redirected {g= 1)

dissolving
mto

Low fute; |

Vibraphone ich.3 [ h

g=2j

The voice names are those for the appropriate channels on the synthesizer; g =gap.

4 tragments
chdg=4

The more interesting sections of the base sequence were left to stand
on their own, except for the final section where a more complex and
cumulative effect was sought towards the end of the piece. The prob-
lem of ending the piece (as, in theory, a sequence is infinite there was
no natural ending to the base sequence) was achieved by increasing the
gap so that the slowing up of tempo as well as a change in musical char-
acter were achieved. At the same time, fragments of other tracks were
superimposed, finishing with an open flute bar from Example 3.

The ‘butterfly’ effect

It is difficult to predict what sort of visual pattern will arise from a given
set of constants. They tend to divide themselves, however, into distinct
groups with similar characteristics, three of which are illustrated over-
leaf. Each of these patterns has been captured from the screen-plot
generated by the fractal program after half a minute, (about 15 000 gen-
erations) without music conversion (so that it runs at its maximum
speed) on an Atari TT.

It is possible also to associate particular musical characteristics with
particular sets of constants if the gap is set to 1, but it is more difficult
to identify these by name because of the inherently abstract nature of
the music.
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doily pattern carpet pattern
(a=3,b=2,¢c=1) (a=1,b=0.1,¢c=1)

butterfly pattern
(a=3,b=6,c=0)

It is said that if a butterfly flaps its wings in Venezuela, this can cause
a hurricane in Florida. The quotation may not be entirely accurate and
it may be impossible to verify, but it emphasizes the unpredictability of
dynamical systems that govern such things as the weather or the eco-
nomy. A feature of all these systems is that a very slight variation in one
of the constants can produce quite markedly different results in the
variables as they develop. In the case of the constants used for Fractal in
A flat, slight variations in the constants produce patterns of the same
type, but with noticeably different features, as illustrated below.

modified carpet pattern modified carpet pattern
(a=1.001, b=0.1,c=1) {a=1,b=0.1,c=0.999)

Using these sets of constants, the music does not initially vary until
generation 656 of x and y, when they begin to diverge from the original
version, and at generation 1566 when they diverge from each other. In
spite of these divergences, they return to similar patterns spasmodically
at a later stage. In actual fact, divergences in the values of x take place
almost immediately, but they are too small to affect the conversion of
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these real values into ‘note’ integers, and they are also too small for
there to be an immediate difference in the visual pattern.

Fractal dialogue (Variations)

In order to illustrate the versatility of the programme, a second com-
position, Fractal dialogue (Variations), was designed to exploit melodic
variations obtainable from varying the channel and pitch ranges. The
generating constants were a = 0.05, b = 0.5 and ¢ = 5. The visual pat-

Example 4.

c

Fractal in A flat, but one of the notable features of this formula is the
general lack of correlation between the visual and audible aspects as far
as interest is concerned. The principal line of music alternates between
oboe and flute sound and employs only the first 171 generations on
channel 2, although this is extended to the first 285 generations for the

last two
used to excite channel 2, while the pitch-range is also varied. This pro-
duces a greater elaboration of the initial ‘theme’ each time, as illus-

trated in Example 4.

Var. 2

Var. 3
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In the selection of timbres for the eight channels, there is clearly a
0 in

t
ice involved. There is also a compositional choice i

compositional ch

selection of sequences and the manner in which they are overlaid, as
well as in the manner and point of termination. Also important is the
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extent to which the computer is allowed to generate the music, rather
than the composer—in other words, how long each individual sequence
should be. In Fractal in A flat, one of these sequences—the solo channe] 3

2]
o
(@]
(D
w
w
w
(@]
Q
3
w
]

The decision, however, to seek out these features is again a composi-
tional one, rather than arbitrary or dependent in some way on the frac-
tal generation itseif. By harnessing several different fractai processes, or
1 — f1 Jescribed. i of
features could be brought under fractal control. This would, of course,
need a radical revision of the program. Another course is possible: fol-
lowing the practice of John Cage, decisions about length of sequences,
position and number of overlays, etc., could be made the result of
chance processes, by the rolling of dice or by random number genera-
tion by the computer.
One question remains to be answered: can the computer be said to
have ‘composed’ anything? The whole idea arose from the awareness
ractal sound patterns generated by this means made musical
sense. Yet the computer could not be described as ‘making decisions’
about melodic shape, motivic repetition or form, aii of which are appar-
ent in the channel 3 generation in Fractal in A flat. If these patterns are
apparent to a listener, it can only be because the listener tries to make
f any kind of pattern in sound. (The question of whether

formal sense o
itself a creative process is not one that can be gone into here,

this is i

as it has ramifications outside the scope of the question of fractal
music.) This is normally done in response to a composer who has gen-
erated these patterns, although not all listeners (depending partly on
their musical background) may perceive these patterns as making sense
to them. It is possible for naturally occurring sounds to form “musical’
patterns, if only in a rudimentary way. The stream of variables genera-
ted by the above formula, however, cannot be included amongst these,
as it is only when the stream of variables is harnessed in a particular
way that musical or visual sense is derived from it, otherwise it remains

a chaotic sequence.

172



NOTES ON CONTRIBUTORS

£ ‘eraatheriidin’ a conenlrancy for
1 [SUNINELETLY ey LUlloulLall\_y 101

international mathematics education based in The Netherlands. He
held lectureships in mathematics education in UK universities, as well

as having taught mathematics in schools in the UK, Italy and the

Netherlands. An active researcher in the history of mathematics, he pre-
sented many talks related to this research at conferences, especially
those of the British Society for the History of Mathematics. He died in

LUVL.

Jonathan Cross is Lecturer in Music at the University of Oxford and
Fellow of Christ Church. He is author of The Stravinsky legacy (1998),
Harrison Biriwisile: Man, mind, music (2000), and editor of The Cambridge
companion to Stravinsky (2002). He is also editor of the journal Music
analysis.

John Fauvel was Senior Lecturer in Mathematics at the Open
University, and former President of the British Society for the History
of Mathematics. He was also involved in an international study of the
relationships between the history and pedagogy of mathematics. He
was an editor and co-editor of several books, including Darwin to
Einstein: historical studies on science and belief (1980), Conceptions of inquiry

(1981), The history of mathematics: a reader (1987), Let Newton be! (1988),
Mobius and his band (1993), and Oxford figures (2000). He died in 2001.

J. V. Field is Visiting Research Fellow in the School of History of Art,
Film and Visual Media at Birkbeck Colleg ge, University of London

Dr Field’s books include Kepler’s geomem’cal cosmology, The geometrical work
of Gerard Desargues (with J. J. Gray), Science in art: Works in the National
Gallery that illustrate the history of science and technology (with F A. J. L.
James) and The invention of infinity: Mathematics and art in the Renaissance.

Raymond Flood is University Lecturer in Computing Studies and
Mathematics at the Department for Continuing Education, Oxford
University, and Fellow of Kellogg College. His main research interests
lie in statistics and the history of mathematics. He is a co-editor of The

nature of time (1986), Let Newton be! (1988), Mobius and his band (1993),
and Oxford figures (2000).

sl VAU

David Fowler is an Emeritus Reader in Mathematics at the University
of Warwick. He has had a long-standing interest in music—its theory,
the physics behind it, and what it sounds like, and most particularly, the

music for (and pverformance on) the piano. He is the author of articles

AAGIL AV falite pulaViidialil 1) LT paaliil. 1 LIt Quaanill Ui @i ualacy

on the history of mathematics and other topics, and of the book The
mathematics of Plato’s Academy: A new reconstruction (Oxtord, 1987, 1999).



Music and mathematics

Carlton Gamer is Professor Emeritus of Music at The Colorado
Coliege, USA. He is a composer and music theorist, and his composi-
tions have been featured in prominent venues in the United States and
Europe. His main theoretical interest is in equal-tempered microtonal

Wilfrid Hodges is Professor of Mathematics at Queen Mary, University
of London. His research is in mathematical logic, and in particular
mode] theory and semantics. In his youth he sang as a choirboy at

174

Christ Church Cathedral Oxford. under Thomas Arimst trong, and at tha
Christ Church Ca tmcarai, UAIUlu, under Thomas Armstron £, uu at uic

King’s School Canterbury he studied the piano with Ronald Smith and
the violin with Clarence Myerscough.

Dermot Roaf is Fellow in Mathematics at Exeter College, University
of Oxford, and is Captain of the Ringers at St. Giles” Church, Oxford.
He has rung most of the methods mentioned in his chapter, including
White’s No-Call Doubles.

Robert Sherlaw Johnson became a lecturer in music at the University
of Yorkin 1965. In 1970 he went on to teach at Oxford University, where
he continued to work until his death in 2000. His many compositions
include A Northumbrian symphony, three piano sonatas and an opera: The
Lambton worm. His book Messiaen (1975) remains the definitive work on
the composer in Pnoheh and he also recorded many of Messiaen’s

piano works and the song cycles with Noélle Barker.

Ian Stewart is Professor of Mathematics at the University of Warwick.
His research area is bifurcation theory and non-linear dynamics. He is
active in the popularization of mathematics, and presented the Royal
Institution Christmas lectures in 1997. He is the author of over sixty
books, including The problems of mathematics (1987) and Does God play
dice? (1989). He was elected a Fellow of the Royal Society in 2001.

Charles Taylor was Professor of Physics at Cardiff from 1965 to 1983,
and Professor of Experimental Physics at the Royal Institution from
1977 to 1989. He presented the Royal Institution Christmas Lectures on
television in 1971 (Sounds of music) and in 1989 (Exploring music) and in
1986 he received the Michael Faraday award for contributions to the
Public Understanding of Science. He died in 2001.

Arthur White is professor of mathematics at Western Michigan
University, Kalamazoo, Michigan. His researches in topological graph
theory have led to several books and articles, and to the composition of



NOTES ON CONTRIBUTORS

Robin Wilson is Head of the Pure Mathematics Department at the
Ve VRPN & SISO B o S0 | WY ol J 20 BS I Y | DN G o B I (PR A PR
wpcen UIllVCrblly dlld rcuow Ol [neolc bUlngC, UXIOId. 1€ 11dS WIILLCT
and edited a number of books on graph theory and combinatorics,

including Introduction to graph theory (1972, 1996) and Four colours suffice

(2002). He is involved with the popularization of mathematics and with
the history of mathematics, and is a co-editor of Let Newton be! (1988),
Mbobius and his band (1993), and Oxford figures (2000).

Susan Wollenberg is a Reader in Music at the Universi

<
o
=
@)
3
=}
=

A
1Y
w

well as Fellow and Tutor of Lady Margaret Hall, and Lecturer in M
at Brasenose College. She has contributed to numerous international
conferences and publications. Her monograph on the history of music
in Oxford (Music at Oxford in the cighteenth and nineteenth centuries) was
published by Oxford University Press in 2001.

175






NOTES, REFERENCES, AND 5 Newton in the mid-1660s ‘learned all that had been
FURTHER READING developed by modern mathematicians’ On Newton,
see P. Gouk, Music, science and natural magic, Chapter 7.
5 The work of Mersenne ... representing ‘a significant
milestone” See P. Gouk, Music, science and natural
magic, Chapter 5, especially 170-8.
QuoTaTIONS _ . .
6 Speculative is that kinde of musicke Thomas Morley,
viii  And so they have handed down to us  Archytas of Plaine and easie introduction to music, Annotations
Tarentum, early fourth century BC. necessary for the understanding of the Booke...".
vili  We must maintain the principle Plato, Republic 531. 6 Music . .. belongs, as a science, to an interesting part of
L L i 5 dd a DLICIILC LU all 11LCLIooLn 5 dll o1
viii  The Pythagoreans considered all mathematical natural philosophy  William Crotch, Substance of
science  Proclus, Commentary on Book I of Euclid’s several courses of lectures on music, read in the University
Elements. of Oxford, and in the metropolis, London, 1831
viii  This science [mathematics] is the easiest Roger (reprinted, introduced by B. Rainbow, Clarabricken,
n Aornse Mainie d 35t Co. Kilkenny, 1986), 1-2.
Bacon, Opus Maius 4, iii. iy ’”
viii 1 do present you with a man of mine William 7 The science of music will not constitute the subject of
Shakespeare, The taming of the shrew, Act 2, Sc. i. the present work W, Crotch, Substance of several
. . . . courses of lectures on music, 3—13.
ix May not Music be described as the Mathematic of o .
Sense James Joseph Sylvester, ‘Algebraical researches 7 ~ Many were keen amateur musicians  A. Richards, The
containing a disquisition on Newton’s rule for the [ree jantasia, p. 141.
discovery of imaginary roots’, Phil. Trans. 154 (1865), 7 the friendly atmosphere and liberal exchange of ideas
613. H.-G. Ottenberg, Carl Philipp Emanuel Bach (translated
ix Mathematics and music, the most sharply contrasted by P.J. Whitmore), Oxford (1987), 152-3.
fields H. von Helmholtz, Vortrage und Reden 8 Proposal for establishing a Laboratory of Acoustics
(1884), 82. University of Oxford Commission: Evidence
iy e crrd ol 4 veting wialinicr ammeared | Walses (Parliamentary Papers, 1881), Supplementary
1A \{uu.c ouuun.xu_y a yuu 15 1V llDL QPPLNLU yvyaiLcl . 4 * & e
Heisenberg, Physics and beyond, Allen & Unwin (1971), 11. Evidence, 374.
ix When Professor Spitta D. MacHale, George Boole: o Among the prime examples ... must be counted the
His life and work, Boole Press, Dublin, 1985. works of . S. Bach  On Bach, an accessible source of
articles on such aspects as mirror canons and fugues,
M number <vmh0hsm and others is the (')rfbrd composer
: VERVIEW
USIC AND MATHEMATICS. AN OVERVIE companions . S. Bach (ed. M. Boyd), Oxford, 1999.
1 Musicke 1 here call that Science John Dee, The mathe- ) _ .. - o e s, .
ticall pracface to the elements of geometrie of Euclid of 9  Atadistance of over 200 years, Hindemith's. .. Ludus
X;a }: 70 8 tonalis  For Hindemith, the New Grove modern masters:
eand, ’ Bartok, Stravinsky, Hindemith, London, 1984 (source of
3 ‘the most transient Graces’ could be ‘mathematically the quoted extracts included here) gives particularly
delineated” See A. Richards, The free fantasia and the clear and assimilable information.
musical picturesque, ("nmbnd_op (2001), 77-79, fora L. .
- 9 Christiaan Huygens . . . expressed a wish that com-
discussion of the phenomenon. Burney’s description . . o
i An eighteenth-century musical tour in central posers ‘would not seek what is the most artificial
appears in An €g Y Quoted in H. E Cohen, Quantifying music: the science
Europe and the Netherlands (ed. P. A. Scholes) o
D 'Burn ’S muslcal tours in Euro ¢ 2 Vols London UJ mm1L at lﬂC’JIT.)L .)Lugr UJ lnt’ JL'IC’TI.I.U IL [\(’.’VUlullUn
(Dr. Burney pe. . ’ 1580~1650, Dordrecht (1984), 225.
1959), Vol. 11, 201-203.
. . ) , . . 9 Their shared concern is essentially . . . the power of
3 such terms as ‘mathematical sciences’ are ‘routinely

used” P Gouk, Music, sci
seventeenth-century England, Yale University Press,
New Haven and London (1999), 4.

C‘ILLC uuu !Lululul "LuglL Ul

o K s e o
the [Royal] Society’s most overt interest in musical

subjects P Gouk, Music, science and natural magic, 62.

music See Cohen, Quantifying music, preface,

pp- xi—xii; and, on the relationship berween
‘cosmology, music and poetry’, and between science
and music, J. Hollander, The untuning of the sky: ideas
of music in English poetry 1500-1700, Princeton, 1961;

republished, 1993.

177



Music and mathematics

CHAPTER 1: TUNING AND TEMPERAMENT: CLOSING
THE SPIRAL

The idea of the mathematical group structure lying behind
scale construction is explored in Chapter 23, ‘Groups and
en's The fascination of groups,

music , O ambridge

University Press, 1972.

Some of the ideas in this chapter are extended in C. Scriba’s
article (in Danish) ‘Matematisk og musik’ in Normat 38(1)
(1990), 3—-17. The ideas of irrationality versus rationality are
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32 However, Kepler has departed Details of Kepler’s
astrological theories are given in J. V. Field,
‘A Lutheran astrologer: Johannes Kepler’, Archive for
history of exact sciences, 31(3) (1984), 189-272.

explored in R. Osserman’s article ‘Rational and irrational:
music and mathematics’ in Essays in humanistic mathematics
(ed. Alvin M. White), published by the Mathematical
Association of America in 1993. A standard text, albeit
somewhat dry, is Music, physics and engineering by

Harry E Olson, published by Dover Publications.

A pleasantly informal approach to some of the ideas appears
in Chapter 11, ,of 3.1416
and all that by Philip J. Davis and William G. Chmn,
Birkhduser, 1985. Newton’s ideas are comprehensively
examined by Penelope Gouk in Chapter 5, “The harmonic
roots of Newtonian science’, of Let Newton be!, edited by

J. Fauvel et al., Oxford University Press, 1988. Readers of
French will enjoy two articles in Kleisleriana (Cahier du
groupe mathématique et musique), No. 1, IREM de Basse-
Normandie, 1985: ‘Histoire du temperament’ by

B. Hacquier and ‘Gammes naturelles’ by Y. Hellegouarch.

Donald E

detail, though with a pleasantly light touch, in ‘Number
harmony’, Mathematical intelligencer 8 (4), 1986.

‘Numbers pmnr and counternoint’
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Parker explores the number-theoretic side

e in more

CHAPTER 2: MUSICAL COSMOLOGY: KEPLER AND

HIS READERS

30 Recent research has shown B. R. Goldstein, "The
Arabic version of Ptolemy’s planetary hypotheses’,
Transactions of the American philosophical society 57

(1967), 3-16.
20 Secret of the Universe ]n]—\qnnnc Kenler Mucterium
Of tne Universe  jonannes Kepier, Mystenum

cosmographicum, Tiibingen, 1596; see also Mysterium
cosmographicum. The secret of the universe, second
edition, Tiibingen, 1621: reprinted with translation by
A. M. Duncan and introduction and commentary by
A. M. Duncan and E. ]. Aiton, New York, 1981.

30 absurd and monstrous Mysterium cosmographicum,

\.,lldPlCI 16.

31  Lengths corresponding to the standard consonances
Johannes Kepler, Mysterium cosmographicum, Chapter
Xli ﬂ more ut‘:t&ilt:u account Ul l\CplC b LI-leOry iS
given in J. V. Field, Kepler’s geometrical cosmology,

London and Chicago, 1988.
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33 his lack of success is displayed in the form of two
tables The first two tables in Chapter IV of Book V,
J- Kepler, Harmonices mundi libri V, Linz, 1619. See also
Johannes Kepler. Five books of the Harmony of the World,
translation, introduction and notes by E. J. Aiton, A. M.
Duncan and J. V. Field, Transactions of the American
philosophical society, 209, Philadelphia, 1997.

35 A particularly spectacular set  See J. V. Field, Kepler’s
geometrical cosmology, London and Chicago (1988).

36  When Kepler objected that no astronomer See
1. V. Field, ‘Kepler’s rejection of numerology’, in
Occult and scientific mentalities in the Renaissance
(ed. B. W. Vickers), Cambridge (1984), 273-96.

38  Figure 5: Mersenne frontispiece Marin Mersenne,

Harmonie universelle, Paris, 1636; ‘facsimile’ reprint
Fﬂlnnn du Centre National de

ICQULEC S1LE) . SQII0ON QU LC

la Recherche SCIentlﬁque, Paris (1963).

39 Actually, it goes back to the sixteenth See
W. B. Ashworth, “The persistent beast: recurring
images in early zoological illustration’, in The natural
sciences and the arts (ed. Allan Ellenius), Acta
universitatis Upsaliensis, Figura Nova 22, Almquist &
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43 Kepler's work is important ~ See J. V. Field, ‘Kepler’s
cosmological theories: their agreement with
observation’, Quarterly journal of the Royal astronomical

society 23 (1982), 556-68.

Discography Music by some of the composers whose
names are to be found in accounts of music at the Court of
Rudolph II in Prague, in particular pieces by Camillo
Zanotti (c.1545-91), who is known to have worked for one
of Kepler’s patrons, is to be found on Capella Rudolphina,
Duodena cantitans, and Michael Consort, conductor Petr
Danék, Musica temporis Rudolphi II, Supraphon, (1994),

CD 11 2176-2231.
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greater detail in the author’s Exploring music, publlshed by
the Institute of Physics in 1992.



Notes, references, and further reading

CHAPTER 4: FAGGOT’S FRETFUL FIASCO roots of numbers’, American mathematical monthly

Py WA L 3rANR]
61  Today's Western music ~ See Otté Karolyi, Introducing 64 (1957) 1-9.

Music, Penguin (1965), for a musician’s introduction to 73 Isaac Schoenberg did the same in 1982  Isaac J.
the principles behind Western musical scales. Schoenberg, ‘On the location of the frets on a guitar’,
62  Frankie and Johnny The origins of this song are not . . T
Mathematical time exposures, Mathematical Association

known, but its structure suggests that it is probably
of America (1982).

from the Mississippi valley in the pre-blues period of

the 1890s; a version, which includes the chord 73  the most natural thing to do  This approach was first
sequence, can be found in Alan Lomax (ed.), The published in Ian Stewart, ‘Les mathématiques de Ja
Penguin book of American folk songs, Penguin Books gamme musicale’, Pour la science 151 (May 1990),
(1964), 121. 108-14, and reprinted in English in lan Stewart,

63  in order to create a harmonious scale  See Another fine math you’ve got me into ..., W. H. Freeman,
C. A. Taylor, The physics of musical sounds, Edinburgh New York (1992).

University Press (1965), for a mathematical 74  abeautiful theory of the so-called Pell equation  For
introduction to the principles behind Western further details, see L. ]. Mordell, Diophantine equations,
musical scales; see also the Notes on Chapter 1. Academic Press, New York (1969).

65 The transcendence of @ For proofs that ¢ and 77 are 75 dhle’s function is then uumiucu In fact, as David
transcendental, see [an Stewart, Galois theory, Fowler has pointed out, while F is not a convergent of
Chapman and Hall, London (1989). the continued fraction for 2, it is a so-called intermedi-

66  Eutocius, a commentator from the 6th century AD ate convergent.

See Ivor Thomas, Selections illustrating the history of

Greek mathematics (2 vols.), Heinemann, London

(1939); this book contains information on many CHAPTER 5: HELMHOLTZ: COMBINATIONAL TONES AND
special geometrical problems, including angle CONSONANCE

trisection by neusis construction, conic sections, the 77 Helmholiz’s book: Die Lehre von den T if‘r‘ripfi‘riu g
quadratrix, and other methods. als physiologische Grundlage fiir die Theorie der Musik (1st

66 David Fowler argues that See David Fowler, The ed. 1863, 4th ed. 1877); translated as On the sensaiions
mathematics of Plato’s Academy: a new reconstruction, of tone by A.J. Ellis (1875, 2nd ed. 1885), reprinted by
Clarendon Press, Oxford, 1987; this book contains a Dover, New York (1954); all page-references here are
wealth of material on the relationship between contin- to the Dover edition.
ued fractions and early Greek mathematics. 77  Bosanquet’s enharmonic harmonium  This

67  Duplicating the cube amounts to solving  For the instrument, constructed in 1876, is in the Science
impossibility of duplicating the cube, see Ian Stewart, Museum, London,; for details of its operation and
Galois theory, Chapman and Hall, London (1989). use, see Ellis’s translation of Helmholtz’s book,

68 In 1581 Vincenzo Galilei See Vincenzo Galilei, pp. 42730, 479-81.

Dialogo della musica antica e moderna, Florence (1581), 77  For a summary of Helmholtz’s life (1821-94) and
49; see also J. M. Barbour, Tuning and temperament, work, with bibliographies, see the introduction to the
Michigan State College Press (1951; 2nd ed., 1953). Dover edition and the entry by R. S. Turner in the

68 In 1636 Marin Mersenne See Chapter 2 and Marin Dictionary of scientific biography.

Mersenne, Harmonie universelle, Paris (1636), 68. 77 On A.]. Ellis (1814-90), see the Dictionary of national
biography, Vol. 22. His further passionate interests in

etymology, phonetics and pronunciation shine

veret ock dylika _“w‘umCmU,, through this translation; see,‘for exampl.e, his %ong
note on p. 24 on the appropriate renderings of the

German Ton and Klang, from which the following is

but one sentence: ‘Timbre, properly a kettledrum, then

a helmet, then the coat of arms surmounted with a

helmet, then the official stamp bearing that coat of

arms (now used in France for a postage label), and

71 It was not until 1957 that J. M. Barbour then the mark which declared a thing to be what it

J. M. Barbour, ‘A geometrical approximation to the pretended to be, Burns’s ‘guinea’s stamp,’ is a foreign
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68 The geometer and economist Jacob Faggot Jacob
Faggot, "Trigonometrisk utrakning, pa den nya
temperaturen for theonernes stimming a claveret’,

YT e

t’roceeamgs 0}' the Swedish acaaemy v (1/4_5) 286-91.
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word, often odiously mispronounced, and not worth CHAPTER 6: THE GEOMETRY OF MUSIC

......... TIn wxrna o frined A1 A. H. Murrav, eln
PLCDCI Vllls I'IC wdad a 11i1c11iud Ul J . 1. Lv1u11a_y, LllC

A good introduction to symmetry in general (particularly in
founding editor of the Oxford English dtctwnary, there

nature and the visual arts) is H. Weyl, Symmetry, Princeton
Umversmy Press (1952) After this, one can browse through a
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Caught in the web of words, Yale University Press,

H.S. M. Coxeter Introducuon to geometry, John Wlley &

1997. Sons, New York (1969); P. M. Neumann, G. A. Stoy and
78  These tones are heard Helmholtz, pp. 152-3. E. C. Thompson, Groups and geometry, Oxford University
80  principle of conservation of energy See, for Press (1994); and D. A. Brannan, M. F. Esplen and J. J. Gray,

example, T. S Kuiin, Energy conservation as an Geomet ¥ Saﬂlhﬂdge ElllsEfSiE) Press (IESS)‘

example of simultaneous discovery’, in M. Claggett
(ed), Critical problems in the history of science,

’ ] ] . CHAPTER 7: RINGING THE CHANGES: BELLS AND
University of Wisconsin Press (1959), 321-56.

MATHEMATICS

80 The mechanical problem Helmholtz, p. 134. , ) ) )
. Dorothy L. Sayers’ detective story The nine tailors, Gollancz

81 Ohm’s law of perception Helmholtz, pp. 33, 56. (1934), is the most exciting introduction to change ringing.
81  If, then, we assume  Helmholtz, p. 413. Extensive information about the history and lore of change
81 History abounds with unwarranted rejection and ringing is available in Change ringing: the history of an English
Foucault presented the results A late-twentieth art (general ed. J. Sanderson), The central council of change
century resolution of a mid-nineteenth century bell ringers, Vol. 1 (1987), Vol. 2 (1992) and Vol. 3 (1994);
dilemma generated by the eighteenth-century John Camp, In praise of bells, Robert Hale, London (1988);
experiments of Ernst Chladni on the dynamics of Ron Johnson, Bellringing, Viking (1986); and Wilfrid G.
rods’, Archive for the history of the exact sciences 43 Wilson, Change ringing, Faber & Faber, London (1965).
(1991), 251-73, on p. 255. Simple mathematical articles about change ringing include
82  Hermann von Helmholtz This photograph appears Arthur White and Robin Wilson, "The hunting group’,
as the frontispiece of J. G. McKendrick’s Hermann Mathematical gazette 79 (1995), 5-16, and B. D. Price,
Ludwig Ferdinand von Helmholtz, Fisher Unwin, ‘Mathematical groups in campanology’, Mathematical gazette
London (1899). 53 (1969), 129-33. More advanced mathematical papers may
82  the Pythagorean association of consonance For the be found in the papers listed in the Notes for this chapter.
Greek texts, with commentaries, see A. Barker, Greek Further information about the mathematics of change-
musical writings, Vol. 2, Cambridge University Press ringing can be found in the following papers:
(1989); the quoted texts below come from pp. 55-6, Deryn Griffiths, “Twin bob compositions of Stedman
191-3 & 160. For a scholarly assessment of trlples , Bulletin of the institute of combinatorics and its
Pythagoreanism, see W. Burkert, Lore and science in applications 16 (1966), 65-76;
ancient Pythagoreanism, Harvard University Press

(1972) R. A. Rankin, ‘A campanological problem in group theory’,
' Mathematical proceedings of the Cambridge philosophical society

84  The problem of explaining consonance was a live issue 44 (1948) 17-25:
r LY o \1790), L/—42,
See H. E Cohen, Quantifying music, Reidel (1984); the

quotations from Kepler and Galileo are on p. 11

W. H. A. Thompson, A note on Grandsire Triples, London,
1886 (reprinted in W. Snowdon, Grandsire, London, 1905:
85  consonance is a continuous. . . sensation of tone revision of J. Snowden, Grandsire, 1888);

Helmholtz, p. 226. Arthur T. White, ‘Ringing the changes’, Mathematical

85 in a celebrated prediction of Helmholtz Helmbholtz, proceedings of the Cambridge philosophical society 94 (1983),

p- 211. 203-15;
86 Helmholtz took the simplest such kind. .. Arthur T. White, ‘Ringing the cosets’, American mathematical
Helmbholtz, p. 417. monthly 94 (1987), 721-46;
86 knowing that diagrams... Helmholtz, pp. 192-3. Arthur T. White, ‘Ringing the cosets 1I', Mathematical
proceedings of the Cambridge philosophical society 105 (1989),

87 Ido not hesitate Helmholtz, p. 227.
53-65;

87  for example, the elaborate connection. ..

Arthur T. White, ‘Fabian Stedman: the first group theorist’,
Helmholtz, pp. 422-30, 470-83.

American mathematical monthly 103 (1996), 771-8.
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129  Since , C. Curtis-Smith’s Concerto for left hand and 139  in matters of rhythmic style Paul Griffiths, Peter
O‘I‘Chf.u va has received performances in Detroit, New Maxwell Davies, Robson, London {(1882), 25.
York and Tokyo. 139 ‘projected’ through the magic square Quoted in Paul

CHAPTER 8. COMPOSING WITH NUMBERS: Griffiths, Peter Maxwell Davies, Robson, London (1982),

SETS, ROWS AND MAGIC SQUARES ;- Grithi I i i

. . . . . . on pages 72-9 of this book.
Excellent introductions to issues in twentieth-century music,

including some technical discussion of works, can be found 139 by which a base metal may be transformed and
in Paul Griffiths, Modern music and after: directions since 1945, governs the whole structure  Quoted in Paul
Clarendon Press, Oxford (1995), and Arnold Whittall, Griffiths, Peter Maxwell Davies, Robson, London
Musical composition in the twentieth century, Oxtord University (1982), 163-5.

Press, Oxford (1999). 140 sequences of pitches and rhythmic lengths and are a

A concise but comprehensive introduction to the twelve- gift to composers  Paul Griffiths, Peter Maxwell
note compositional techniques of Schoenberg, Berg and Davies, Robson, London (1982), 164, 173.

Webern is given in George Perle, Serial composition and

nmnnhr\l 5th edn ”mvprmrv of California Press

.......... an., o All10T1 FTERS, L

145 I discovered on coming into contact and With Le
Corbusier I discovered architecture  Xenakis (1977),
quoted in Nouritza Matossian, Xenakis, Kahn and

One ot the most hlghly developed accounts ot the creative AVCI'iH, London (1986), 53, 55,

possibilities offered by mathematics for music is to be found

in Iannis Xenakis, Formalized music. Thought and mathematics 145 possible to produce ruled surfaces lannis Xenakis,
i romnncitinn  Damdragnn Drece Crivuscant New Vel Formalized music. Thought and mathematics in

e LV’Il‘IUJLLlV’I, rL.uul.asuu f g S S A Y uLuy Yioalll, INUVWY 1uUln” [}

(revised in 1992). composition, Pendragon Press, Stuyvesant, New York

(ermP(‘] 'IOQ’)\ 10; he goes on to demonstrate ‘the

Cont sial and thought-provoking accounts of th
ontroversia an ougnt-prov g accotn ¢ causal chain of ideas Wthh led me to formulate the

architecture of the Philips Pavilion from the score of
Metastasis’.

structure of the music of Bartok and Debussy in terms of

golden section and Fibonacci numbers can be found in Erné
Lendvai, Bela Baridk: an analysis of his music, Kahn & Averill,
London (1971), and Roy Howat, Debussy in proportion. A musi- 145 sound events made out of a large number Xenakis

cal analysis, Cambridge University Press, Cambridge (1983). (1972), quoted in Nouritza Matossian, Xenakis, Kahn

132 In music there is no form and The introduction of my and Averill, London (1986), 58.

method Arnold Schoenberg, ‘Composition with 146 Xenakis’s symbolic music  Paul Griffiths, "Xenakis:
twelve tones’, Style and idea (ed. L. Stein, tr. L. Black), logic and disorder’, Musical times 116 (April 1975), 330.
Faber & Faber, London (revised 1984), 244 and 223-4. 146 he gives us something only an artist can give

133 For the rest Anton Webern, The path to the new music Nouritza Matossian, Xenakis, Kahn and Averill
{ed. W. Reich, tr. L. Black), Universal F'd on, London London (1986), 243—4
(1975), 53.

146 the effort to make ‘art’ while ‘geometrizing’ Iannis

134 For a detailed discussion of the Lyn'c Suite, see G. Perle, Xenakis, Formalized music. Thought and mathematics in

‘“The corret nraoramme nf tha vric Suite’, Musical . . R . o o .
1 ne secret programme of the y 1C suite , Miusicai composition, Pendragon Press, btuyvesant, New York
times 118 (Aug-Oct 1977), 629-32, 709-13, 809-13. (revised 1992), ix

, 1X.

135 It has also, my Hanna G. Perle, “The secret
programme of the Lyric Suite’, Musical times
118 (Aug-Oct 1977), 709.

135 its "suitability for study’: Arnold Whittall, Music since CHAPTER 9: MICROTONES AND PROJECTIVE PLANES
the First World War, Dent, London (1977), 174. A historical account of various equally tempered systems
137 An exhaustive analysis of the serial organisation of appears in J. M. Barbour’s Tuning and temperament:
ey atrizn Ty ie v b £nce 35 o e Dia 2 historical survey nublished by Michioan State Collece
(e uLLu' ju 15 LU UcC luul]u 1]1 Uyulgy LASCLI rlcllc WOV IV onT VLJ, l,luuuou\_u v lVllLlllsall wialc UUAI\-&\,
Boulez: decisions and automatism in Structure Ia’, Die Press (1953).

Reihe 4 (English edn. 1960), 36-62. An introduction to atonal music and the mathematical tools

—t
Qo
\O

composition and organisation cannot be confused it uses can be found in A. Forte’s The structure of atonal
Pierre Boulez, Stocktakings from an apprenticeship music, Yale University Press (1973), and J. Rahn’s Basic atonal
(tr. Stephen Walsh), Clarendon Press, Oxford (1991), 16.  theory, Longman (1980).
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The relationship between transposition and inversion, or J. H. van Lint and R. M. Wilson’s A course in combinatorics,
among numerous other foundational matters, is formalized  2nd ed, Cambridge University Press (2001)
in D. Lewin’s Generalized musical intervals and transformations,
Yale University Press (1987). CHAPTER 10: COMPOSING WITH FRACTALS

— Thecompositional employment of pitch classes receives @163 A glance through the illustrations See Heinz-Otto
thorough explication in R. D. Morris’s Composition with Peitgen and Dietmar Saupe (eds.), The science of fractal
pitch-classes, Yale University Press (1987). images, Springer, New York (1988), and Heinz-Otto
The history of major-minor dualism is traced in Peitgen and Peter H. Richter, The beauty of fractals,
D. Harrison’s Harmonic function in chromatic music, Springer, New York (1986). Chaotic dynamical systems
University of Chicago Press (1994). are described in Chapter 3, and the Mandelbrot set in
Finally, a fuller discussion of block designs, projective planes Chapter 4, of Peitgen and Saupe’s book.
and difference sets can be found in I. Anderson’s A first 163 A. K. Dewdney’s mathematics column appeared in
course in combinatorial mathematics, 2nd edn., Oxford (1989), Scientific American, September 1986.
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